$$
\begin{array}{r}
\left\langle u_{\alpha}\left(l_{k}^{l}\right) u_{\beta}\left({ }_{k}^{l}\right)\right\rangle=\frac{k T}{N} \sum_{\mathbf{k}}\left(\Phi^{-1}\right)_{\alpha \beta}\left(\frac{\mathbf{k}}{}\right)+\frac{\hbar^{2} \delta_{\alpha \beta}}{12 k T M_{\kappa}} \\
-\frac{\hbar^{4}}{720 k^{3} T_{N}^{3} M_{\kappa}^{2}} \sum_{\mathbf{k}} \Phi_{\alpha \beta}\left(\frac{\mathbf{k} k}{}\right), T>\Theta_{D} / 2 . \tag{18}
\end{array}
$$

Equation (18) describes the vibration of an atom in a crystal lattice for temperatures above half the Debye temperature of the lattice. From the quantities $\left\langle u_{\alpha}\left(\frac{l}{k}\right) u_{\beta}\binom{l}{k}\right\rangle$, the anisotropic Debye-Waller B values can be obtained by well known methods (Cruickshank, 1956). At high temperatures, $T>\Theta_{D}$, only the first term in the right-hand part of equation (18) is of importance, and Debye-Waller B values become independent of the atomic masses.

Two restrictions should be made. Equation (18) has been derived within the harmonic approximation which will certainly be violated at very high temperatures. The second restriction is in dealing with the temperature dependence of the two sums in equation (18). The matrix elements $\left(\Phi^{-1}\right)_{\alpha \beta}\binom{\mathrm{k}}{\kappa \kappa}$ and $\Phi_{\alpha \beta}\left(\frac{\mathrm{k}}{\mathrm{k}}\right)$ are temperature dependent, via the interatomic forces which depend, for example, on the atomic distances. It is expected, however, that the sums will vary only very little with temperature.

Example

For a cubic lattice, the Debye-Waller B value of the κ th atom is obtained from equation (18) as:

$$
\begin{align*}
& B_{\kappa}=8 \pi^{2}\left[\frac{k T}{N} \sum_{\mathbf{k}}\left(\boldsymbol{\Phi}^{-1}\right)_{\alpha \alpha}(\mathbf{k})+\frac{\hbar^{2}}{12 k T M_{\kappa}}\right. \\
&\left.-\frac{\hbar^{4}}{720 k^{3} T_{N}^{3}} M_{\kappa}^{2} \sum_{\mathbf{k}} \Phi_{\alpha \alpha}(\mathbf{k})\right] . \tag{191}
\end{align*}
$$

In the above expression the first term in the right-hand part is independent of the atomic mass. The other two terms are inversely proportional to the atomic mass and to the square of the atomic mass. In general, it is very difficult to evaluate the two sums of equation (19), because, for this, a detailed knowledge of the atomic forces is required. We have determined the two sums by a least-squares fit of equation (19), for 12 temperatures, to $\mathrm{KBr} B$ values calculated by Reid \& Smith (1970). The Debye temperature of KBr is about $160^{\circ} \mathrm{K}$ (Reid \& Smith, 1970) and the 12 temperatures chosen range from $75^{\circ} \mathrm{K}$ (about half the Debye temperature) up to $295^{\circ} \mathrm{K}$. Results are shown in Table 1.

The results in Table 1 show the various contributions to B_{κ} at temperatures above the Debye temperature (for $\mathrm{KBr} 160^{\circ} \mathrm{K}$) the main contribution to the DebyeWaller B values comes from the mass-independent term of equation (19). Table 1 also shows that equation (19) describes very well, in a large temperature region, the temperature dependence of both the DebyeWaller B values of KBr .

References

Cruickshank, D. W. J. (1956). Acta Cryst. 9, 747.
Keffer, C., Hayes, T. M. \& Bienenstock, A. (1968). Phys. Rev. Letters, 21, 1676.
Korhonen, U. \& Linkoaho, M. (1966). Ann. Acad. Sci. Fenn. A VI, No. 195.
Maradudin, A. A., Montroll, E. W. \& Weiss, G. H. (1963). Theory of Lattice Dynamics in the Harmonic Approximation. New York: Academic Press.
Raccah, P. M. \& Arnott, R. J. (1967). Phys. Rev. 153, 1028.

Reid, J. S. \& Smith, T. (1970). J. Phys. Chem. Solids, 31, 2689.

Sanger, P. L. (1969). Acta Cryst. A25, 694.
Waller, I. (1925). Dissertation, p. 27. Uppsala.

Acta Cryst. (1972). A28, 172

The Method of Ascent in Symmetry. I. Theory and Tables

By L.L.Boyle
University Chemical Laboratory, Canterbury, Kent, England

(Received 3 December 1970)
Supergroup tables are presented whereby a representation of a subgroup can be correlated with those representations of the supergroup which are obtained on ascent in symmetry. The method of derivation is explained and various orientations of the subgroup with respect to the supergroup considered. The tables also include the correlations between the double-valued representations of the corresponding double groups.

Introduction

The well-known process of descent in symmetry allows one to discuss how the representations of a given group decompose into representations of a subgroup. Tables
have been constructed to facilitate many such correlations and these are very useful in numerous physical problems, e.g. the splitting of atomic energy levels in a crystal field.

The reverse correlation, in which we ascend in
symmetry from a group to a supergroup is less well known and supergroup tables have not been published for all the cases of interest. In this series of papers it will be shown that such tables may rigorously be applied to a wide variety of physical problems. These will include the rapid construction of molecular orbitals, the determination of molecular and lattice vibrations, the study of problems concerning electron and nuclear spins and the additivity of the tensorial properties of
bonds and atoms, e.g. polarizability. The first paper contains the general mathematical theory and the tables which are of use in all the applications.

Theory

Let us consider the ascent in symmetry from the point group C_{2} to $C_{2 v}$. The representations of these groups can be specified by considering their behaviour with

Table 1. Ascent in symmetry from $C_{2 n+1}$ groups

Table 2. Ascent in symmetry from $C_{2 n}$ groups

			$C_{2} \rightarrow C_{2}^{z *}$	$C_{2} \rightarrow C_{2}$	$C_{2} \rightarrow C_{2}^{\prime} \dagger$
C_{2}	$C_{4 p}$	$C_{4 p+2}$	D_{2}	$D_{4 p+2}$	$D_{4 p+2}$
A	$A+B+\sum_{p-1}^{\prime} E_{2 r}$	$A+\sum_{p} E_{2 r}$	$A+B_{1}$	$A_{1}+A_{2}+2 \sum_{p} E_{2 r}$	$A_{1}+B_{1}+\sum_{2 p} E_{r}$
B	$\sum_{p} E_{2 r-1}$	$B+\sum_{p} E_{2 r-1}$	$B_{2}+B_{3}$	$B_{1}+B_{2}+2 \sum_{p} E_{2 r-1}$	$A_{2}+B_{2}+\sum_{2 p} E_{r}$
$E_{1 / 2}$	$\sum_{2 p} E_{(2 r-1) / 2}$	$\sum_{2 p+1} E_{(2 r-1) / 2}$	$2 E_{1 / 2}$	$2 \sum_{p+1} E_{(2 r-1) / 2}$	$2 \sum_{p+1} E_{(2 r-1) / 2}$

			$C_{2} \rightarrow C_{2}$
C_{2}	$D_{2 p+1}$	$D_{4 p} \rightarrow C_{2}^{\prime} \dagger$	
A	$A_{1}+\sum_{p} E_{r}$	$A_{1}+A_{2}+B_{1}+B_{2}+2 \sum_{p-1}^{\prime} E_{2 r}$	$A_{1}+B_{1}+\sum_{2 p-1} E_{r}$
B	$A_{2}+\sum p E_{r}$	$2 \sum_{p} E_{2 r-1}$	$A_{2}+B_{2}+\sum_{2 p-1} E_{r}$
$E_{1 / 2}$	$E_{(2 p+1) / 2}+2 \sum_{p} E_{(2 p-1) / 2}$	$2 \sum_{2 p} E_{(2 r-1) / 2}$	$2 \sum_{2 p} E_{(2 r-1) / 2}$

	$C_{2} \rightarrow C_{2}$	$C_{2} \rightarrow C_{2}^{\prime}$	$C_{2} \rightarrow C_{2}$	
C_{2}	$D_{2 d}$	$D_{2 d}$	$C_{2} \rightarrow C_{2}^{\prime}$	
A	$A_{1}+A_{2}+B_{1}+B_{2}$	$A_{1}+B_{2}+E$	$A_{1}+A_{2}+2 E+T_{1}+T_{2}$	$A_{1}+E+T_{1}+2 T_{2}$
B	$2 E$	$A_{2}+B_{2}+E$	$2 T_{1}+2 T_{2}$	$A_{2}+E+2 T_{1}+T_{2}$
$E_{1 / 2}$	$2 E_{1 / 2}+2 E_{3 / 2}$	$2 E_{1 / 2}+2 E_{3 / 2}$	$2 E_{1 / 2}+2 E_{5 / 2}+4 G_{3 / 2}$	$2 E_{1 / 2}+2 E_{5 / 2}+4 G_{3 / 2}$

$C_{2 p}$	$S_{4 p}$	$C_{2 p v}$ or $D_{2 p}$ (except $\left.D_{2}\right)$
A	$A+B$	$A_{1}+A_{2}$
B	E_{p}	$B_{1}+B_{2}$
E_{r}	$E_{r}+E_{2 p-r}$	$2 E_{r}(1 \leq r \leq p-1)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2}+E_{(4 p-2 r+1) / 2}$	$2 E_{(2 r-1) / 2}(1 \leq r \leq p)$

* Interchange of $\left\{C_{2}^{z}, C_{2}^{y}, C_{2}^{x}\right\}$ in D_{2} requires interchange of $\left\{B_{1}, B_{2}, B_{3}\right\}$ respectively.
\dagger Interchange of C_{2}^{\prime} and $C_{2}^{\prime \prime}$ in $D_{2 n+2}$ requires interchange of B_{1} and B_{2}.
respect to the generators of these groups. These are the key elements from which all the others may be derived and will be denoted in braces e.g. $\left\{C_{2}\right\}$ and $\left\{C_{2}, \sigma_{v}^{\alpha z}\right\}$ for the point groups C_{2} and $C_{2 v}$ respectively. In ascending from C_{2} to $C_{2 v}$ it is necessary to specify how the representation of $C_{2 v}$ obtained will behave with respect to the new generator, $\sigma_{v}^{x z}$. All possibilities must be accounted for and so we obtain the supergroup table

$$
\begin{array}{l|l}
C_{2} & C_{2 v} l_{1} \\
\hline A & A_{1}+A_{2} \\
B & B_{1}+B_{2}
\end{array}
$$

where A and B representations are respectively symmetric and anti-symmetric to the C_{2} operation and the subscripts 1 and 2 respectively denote symmetry and anti-symmetry to the $\sigma^{x z}$ reflexion. If $h_{<}$and $h_{>}$denote the orders of the sub- and supergroup respectively, the character system of the representation of the super-
group obtained by ascent in symmetry will be such that (1) for elements in both groups the character will be $h_{>} / h_{<}$times the corresponding character of the representation of the subgroup;
(2) for elements occurring only in the supergroup all characters are zero.

This is a mathematical process by which all supergroup tables may be obtained, but it is much quicker to take advantage of the subgroup tables, many of which have already been published. The basis for this is that if two representations are related by descent in symmetry, they must also be related by ascent in symmetry. The subgroup table $C_{2 v} \rightarrow C_{2}$ shows that the A representations of C_{2} are only obtained from A_{1} and A_{2} representations of $C_{2 v}$ so we should expect the supergroup table $C_{2} \rightarrow C_{2 v}$ to contain the entry $A \rightarrow A_{1}+A_{2}$. In applying this method, two points must be taken into account in more difficult cases:

Table 3. Ascent in symmetry from $C_{(2 n-1) h}$ groups

$C_{1 n}$	$C_{(2 p+1) h}$	$\begin{aligned} & \sigma \rightarrow \sigma_{h} \\ & D_{(2 p+1) h} \end{aligned}$	$\begin{aligned} & \sigma \rightarrow \sigma_{v} \\ & D_{(2 p+1) h} \end{aligned}$	$\begin{aligned} & \sigma \rightarrow \sigma_{v} \dagger \\ & C_{2 p v} \end{aligned}$	$\begin{aligned} & \sigma \rightarrow \sigma^{x y} \ddagger \\ & D_{2 h} \end{aligned}$
$\begin{aligned} & \overline{A^{\prime \prime}} \\ & A^{\prime \prime} \end{aligned}$	$\begin{aligned} & A_{A^{\prime}+\sum_{p} E_{r_{1}^{\prime}}^{\prime \prime}}^{A^{\prime \prime}+\sum p} \sum_{p}^{\prime \prime} \end{aligned}$	$\begin{aligned} & A_{1}^{\prime}+A_{2}^{\prime}+2 \sum_{p} E_{r_{1}^{\prime}}^{\prime} \\ & A_{1}^{\prime \prime} A_{2}^{\prime \prime}+2 \sum_{p}^{\prime \prime} \end{aligned}$	$\begin{aligned} & A_{1}^{\prime}+A_{2}^{\prime \prime}+\sum^{p}\left\{\begin{array}{l} \left.E_{1}^{\prime}+E_{r}^{\prime \prime}\right\} \\ A_{1}^{\prime \prime}+A_{2}^{\prime}+\sum_{p}\left\{E_{r}^{\prime}+E_{r}^{\prime \prime}\right\} \end{array}\right. \end{aligned}$	$\begin{aligned} & A_{1}+B_{1}+\sum^{\prime} p-1 E_{r} \\ & A_{2}+B_{2}+\sum^{\prime} p-1 E_{r} \end{aligned}$	$\begin{aligned} & A_{g}+B_{1 g}+B_{2 u}+B_{3 u} \\ & A_{u}+B_{1 u}+B_{2 g}+B_{3 g} \end{aligned}$
$E_{1 / 2}$	$\Sigma_{2 p+1} E_{(2 r-1)}$	$2 \sum_{2 p+1} E_{(2 r-1) / 2}$	$2 \sum_{2 p+1} E_{(2 r-1) / 2}$	$2 \sum_{p} E_{(2 r-1) / 2}$	$2 E_{1 / 2 \varepsilon}+2 E_{1 / 2 u}$

\underline{C}	$\begin{aligned} & \sigma \rightarrow \sigma_{h} \\ & D_{4 p h} \end{aligned}$	$\begin{aligned} & \sigma \rightarrow \sigma_{v} \dagger \\ & D_{4 p h} \dagger \end{aligned}$
$\begin{aligned} & \overline{A^{\prime}} \\ & A^{\prime \prime} \end{aligned}$	$\begin{aligned} & A_{1 g}+A_{2 g}+B_{1 g}+B_{2 g}+2 \sum_{p} E_{(2 r-1) u}+2 \sum^{\prime} p-1 E_{2 r g} \\ & A_{1 u}+A_{2 u}+B_{1 u}+B_{2 u}+2 \sum_{p} E_{(2 r-1) g}+2 \sum^{\prime \prime} p-1 E_{2 r u} \end{aligned}$	$\begin{aligned} & A_{1 g}+A_{2 u}+B_{1 g}+B_{2 u}+\sum_{2 p-1}\left\{E_{r g}+E_{r u}\right\} \\ & A_{1 u}+A_{2 g}+B_{1 u}+B_{2 g}+\sum 2 p-1\left\{E_{r g}+E_{r u}\right\} \\ & \hline \end{aligned}$
$E_{1 / 2}$	$2 \sum_{2 p}\left\{E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}\right\}$	$2 \sum_{2 p}\left\{E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}\right\}$

\underline{C}	$\begin{gathered} \sigma \rightarrow \sigma_{h} \\ D_{(4 p+2) h} \end{gathered}$	$\begin{aligned} & \sigma \rightarrow \sigma_{v} \dagger \\ & D_{(4 p+2) h} \end{aligned}$
$\overline{A^{\prime \prime}}$	$\begin{aligned} & A_{1 g}+A_{2 g}+B_{1 u}+B_{2 u}+2 \sum_{p}\left\{E_{(2 r-2) u}+E_{2 r g}\right\} \\ & A_{1 u} A_{2} A_{2 v}+B_{1 g}+B_{2 g}+2 \sum_{n}\left\{E_{(r r-)}+E_{2 r u}\right\} \end{aligned}$	$A_{1 g}+A_{2 u}+B_{1 u}+B_{2 g}+\sum_{2 p}\left\{E_{r g}+E_{r u}\right\}$
$E_{1 / 2}$	$2 \sum_{2 p+1}\left\{E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}\right\}$	$2 \sum_{2 p+1}\left\{E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}\right\}$

$C_{1 h}$	$\begin{aligned} & \sigma \rightarrow \sigma_{n} \\ & \sigma_{h} \end{aligned}$	$\begin{aligned} & \sigma \rightarrow \sigma_{d} \\ & O_{h} \end{aligned}$
$\begin{aligned} & \overline{A^{\prime \prime}} \\ & A^{\prime \prime} \end{aligned}$	$\begin{aligned} & A_{1 g}+A_{2 g}+2 E_{g}+T_{1 g}+2 T_{1 u}+T_{2 g}+2 T_{2 u} \\ & A_{1 u}+A_{2 u}+2 E_{u}+2 T_{1 g}+T_{1 u}+2 T_{2 g}+T_{2 u} \end{aligned}$	$\begin{aligned} & A_{1 g}+A_{2 u}+E_{g}+E_{u}+T_{1 g}+2 T_{1 u}+2 T_{2 g}+T_{2 u} \\ & A_{1 u}+A_{2 g}+E_{g}+E_{u}+2 T_{1 g}+T_{1 u}+T_{2 g}+2 T_{2 u} \end{aligned}$
$E_{1 / 2}$	$2 E_{1 / 2 E}+2 E_{1 / 2} E^{\prime}+2 E_{5 / 2 E}+2 E_{5 / 2}+4 G_{3 / 2 \xi}$	$2 E_{1 / 2 g}+2 E_{1 / 2 u}+2 E_{5 / 2 g}+2 E_{5 / 2 u}+4 G_{3 / 2 g}+4 C^{\prime}$

$C_{(2 p-1) h}$	$C_{(4 p-2) h}$	
A^{\prime}	$A_{g}+B_{u}$	
$A^{\prime \prime}$	$A_{u}+B_{g}$	
$E_{2 r-1}^{\prime}$	$E_{(2 r-1)}+E_{(2 p-2 r) g}$	$(1 \leq r \leq p-1)$
$E_{2 r-1}$	$E_{(2 r-1) g}+E_{(2 p-2 r) u}$	$(1 \leq r \leq p-1)$
$E_{r r}$	$E_{2 \text { rg }}+E_{(2 p-2 r-1) u}$	$(1 \leq r \leq p-2)$
$E_{2 r}$	$E_{2 r u}+E_{(2 p-2 r-1) g}$	$(1 \leq r \leq p-2)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}$	$(1 \leq r \leq 2 p-1)$

$C_{(2 p+1) h}$	$D_{(2 p+1) h}$	
A^{\prime}	$A_{1}^{\prime}+A_{2}^{\prime}$	
$A^{\prime \prime}$	$A_{1}^{\prime \prime}+A_{2}^{\prime \prime}$	
E^{\prime}	$\left.2 E^{\prime} \leq r \leq p\right)$	
$E_{r}^{\prime \prime}$	$2 E_{r}^{\prime \prime}$	$(1 \leq r \leq p)$
$E_{(2 r-1) / 2}$	$2 E_{(2 r-1) / 2}$	$(1 \leq r \leq 2 p+1)$

[^0]* In the group $C_{2 v}$, take $\sigma^{x z}=\sigma_{v}$ and $\sigma^{y z}=\sigma_{d}$.
\dagger For σ_{d} instead of σ_{v}, interchange B_{1} and B_{2}, parity labels being unchanged where relevant.
\ddagger Permutation of $\left\{\sigma^{x y}, \sigma^{x z}, \sigma^{y z}\right\}$ implies a corresponding permutation of $\left\{B_{1}, B_{2}, B_{3}\right\}$ irrespective of the parity label.

Table 4. Ascent in symmetry from $C_{2 n \dot{v}}$ groups

$C_{2 v}$	$\begin{aligned} & \sigma_{v} \rightarrow \sigma_{v}{ }^{*} \\ & C_{4 p v} \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma^{x z} \rightarrow \sigma_{v}{ }^{*} \dagger \\ & C_{(4 p+2) v} \end{aligned}$
\bar{A}_{1}	$A_{1}+B_{1}+\sum^{\prime}{ }_{p-1} E_{2 r}$	$A_{1}+\sum_{p} E_{2 r}$
A_{2}	${ }^{A_{2}}+B_{2}+\Sigma^{\prime}{ }_{p-1} E_{2 r}$	$A_{2}+\sum_{p} E_{2 r}$
B_{1}	$\sum_{\sum} p E_{2 r-1}$	$B_{1}+\sum_{p}{ }^{2} E_{2 r-1}$
B_{2}	$\sum_{p} E_{2 r-1}$	$B_{2}+\sum p E_{2 r-1}$
$E_{1 / 2}$	$\sum_{2 p} E_{(2 r-1) / 2}$	$\sum_{2 p_{+1}} E_{(2 r-1) / 2}$

$C_{2 v}$	$\begin{aligned} & \sigma^{x z} \rightarrow \sigma^{x z \dagger} \dagger \\ & C_{2 h} \rightarrow C_{2}^{z} \\ & D_{2 h} \end{aligned}$	$\begin{gathered} 2 \sigma_{v} \rightarrow 2 \sigma_{v}^{*} \\ D_{4 h} \end{gathered}$	$\underset{D_{4 h}}{\sigma_{h}^{x z} \rightarrow \sigma_{h} ; \sigma^{y z} \rightarrow \sigma_{v} \dagger \dagger}$
A_{1}	$A_{g}+B_{1 u}$	$A_{1 g}+A_{2 u}+B_{1 g}+B_{2 u}$	$A_{1 g}+B_{1 g}+E_{u}$
A_{2}	$A_{u}+B_{1 g}$	$A_{1 u}+A_{2 g}+B_{1 u}+B_{2 g}$	$A_{1 u}+B_{1 u}+E_{6}$
B_{1}	$B_{2 g}+B_{3 u}$	$E_{g}+E_{u}$	$A_{2 g}+B_{2 g}+E_{u}$
B_{2}	$B_{2 u}+B_{3 g}$	$E_{g}+E_{u}$	$A_{2 u}+B_{2 u}+E_{g}$
$E_{1 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{3 / 2 g}+$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{3 / 2 g}+E^{\prime}$

	$C_{2} \rightarrow C_{2} ; \sigma^{x z} \rightarrow \sigma_{v}{ }^{*} \dagger$	$C_{2} \rightarrow C_{2}^{\prime} ; \sigma^{x z} \rightarrow \sigma_{h} \dagger \S$
$C_{2 v}$	$D_{6 h}$	$D_{6 h}$
A_{1}	$A_{1 g}+A_{2 u}+E_{2 g}+E_{2 u}$	$A_{1 g}+B_{1 u}+E_{1 u}+E_{2 g}$
A_{2}	$A_{1 u}+A_{2 g}+E_{2 g}+E_{2 u}$	$A_{1 u}+B_{1 g}+E_{1 g}+E_{2 u}$
B_{1}	$B_{1 u}+B_{2 g}+E_{1 g}+E_{1 u}$	$A_{2 g}+B_{2 u}+E_{1 u}+E_{2 g}$
B_{2}	$B_{1 g}+B_{2 u}+E_{1 g}+E_{1 u}$	$A_{2 u}+B_{2 g}+E_{1 g}+E_{2 u}$
$E_{1 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{3 / 2 g}+E_{3 / 2 u}+E_{5 / 2 g}+E_{5 / 2 u}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{3 / 2 g}+E_{3 / 2 u}+E_{5 / 2 g}+E_{5 / 2 u}$

	${ }^{x z} \rightarrow \sigma_{h} \dagger$	
$C_{2 v}$	$D_{(2 p+1) h}$	$D_{2 p d}$
A_{1}	$A_{1}^{\prime}+\sum_{p} E_{r,}^{\prime}$	$A_{1}+B_{2}+\sum^{\prime} p-1 E_{2 r}$
A_{2}	$A_{1}^{\prime}+\sum_{p} E_{r}^{\prime \prime}$	$A_{2}+B_{1}+\sum^{\prime} p-1 E_{2 r}$
B_{1}	$A_{2}^{2}+\sum_{p} E_{r,}^{\prime}$	$\sum_{p} E_{2 p-1}$
B_{2}	$A_{2}+\sum p E_{r}$	$\sum_{2 p-1}$
$E_{1 / 2}$	$\sum_{2 p+1} E_{(2 r-1) / 2}$	$\sum_{2 p} E_{(2 r-1) / 2}$

	$2 \sigma_{v} \rightarrow 2 \sigma_{h}$	$2 \sigma_{v} \rightarrow 2 \sigma_{d}$	$\sigma^{x z} \rightarrow \sigma_{h} ; \sigma^{v z} \rightarrow \sigma_{d} \dagger$
$C_{2 v}$	O_{h}	O_{h}	O_{h}
A_{1}	$A_{1 g}+A_{2 g}+2 E_{g}+T_{1 u}+T_{2 u}$	$A_{1 g}+A_{2 u}+E_{g}+E_{u}+T_{1 u}+T_{2 g}$	$A_{1 g}+E_{g}+T_{1 u}+T_{2 g}+T_{2 u}$
A_{2}	$A_{1 u}+A_{2 u}+2 E_{u}+T_{1 g}+T_{2 g}$	$A_{1 u}+A_{2 g}+E_{g}+T_{2 u}+E_{u}+T_{1 g}$	$A_{1 u}+E_{u}+T_{1 g}+T_{2 g}+T_{2 u}$
B_{1}	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$	$A_{2 g}+E_{g}+T_{1 g}+T_{1 u}+T_{2 u}$
B_{2}	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$	$A_{2 u}+E_{u}+T_{1 g}+T_{1 u}+T_{2 g}$
$E_{1 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{5 / 2 g}+E_{5 / 2 u}+2 G_{3 / 2 g}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{5 / 2 g}+E_{5 u / 2}+2 G_{3 / 2 g}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{3 / 2 g}+E_{3 / 2 u}+2 G_{3 / 2 g}$
	$+2 G_{3 u / 2}$	$+2 G_{3 / 2 u}$	$+2 G_{3 u / 2}$

$C_{2 p v}$	$D_{2 p d}$
A_{1}	$A_{1}+B_{2}$
A_{2}	$A_{2}+B_{1}$
B_{1}, B_{2}	E_{p}
E_{r}	$E_{r}+E_{2 p-r}(1 \leq r \leq p-1)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2}+E_{(4 p-2 r+1) / 2}(1 \leq r \leq p)$

	$\sigma_{v} \rightarrow \sigma_{v}{ }^{*}$
$C_{4 p v}$	$D_{4 p h}$
A_{1}	$A_{1 g}+A_{2 u}$
A_{2}	$A_{1 u}+A_{2 g}$
B_{1}	$B_{1 g}+B_{2 u}$
B_{2}	$B_{1 u}+B_{2 g}$
E_{r}	$E_{r g}+E_{r u}(1 \leq r \leq 2 p-1)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}(1 \leq r \leq 2 p)$

$C_{(4 p+2) v}$	$\sigma_{v} \rightarrow \sigma_{v}{ }^{*}$ $D_{(4 p+2) h}$
A_{1}	$A_{1 g}+A_{2 u}$
A_{2}	$A_{1 u}+A_{2 g}$
B_{1}	$B_{1 u}+B_{2 g}$
B_{2}	$B_{1 g}+B_{2 u}$
E_{r}	$E_{r g}+E_{r u}(1 \leq r \leq 2 p)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}(1 \leq r \leq 2 p+1)$

* For σ_{d} instead of σ_{v} in the supergroup, interchange B_{1} and B_{2} (irrespective of any parity label) on the right-hand side of the Table.
\dagger For $\sigma^{y z}$ instead of $\sigma^{x z}$ in $C_{2 v}$ interchange B_{1} and B_{2} on the left-hand side of the Table.
\ddagger Permutation of $\left\{C_{2}^{z}, C_{2}^{y}, C_{2}^{x}\right\}$ in $D_{2 h}$ implies a corresponding permutation of $\left\{B_{1}, B_{2}, B_{3}\right\}$, irrespective of the parity label, on the right-hand side of the Table.
\S For $C_{2}^{\prime \prime}$ instead of C_{2}^{\prime}, proceed as footnote marked*.
(1) if on descent in symmetry, an irreducible representation of the subgroup occurs more than once, then on ascent in symmetry that number of the representation of the supergroup will be obtained from the representation of the subgroup, except when
(2) the representation of the supergroup is degenerate and separable, i.e. it consists of a complex conjugate pair of representations, in which case each member of the pair should be treated separately. The separable representations are the doublydegenerate representations of the point groups $C_{n}, C_{n h}$ (both for $n \geq 3$), $S_{2 n}(n \geq 2), T$ and T_{h}, the doubly degenerate representations of the double groups $C_{n}^{\prime}(n \geq 3), C_{n h}^{\prime}(n \geq 1), S_{2 n}^{\prime}(n \geq 2)$, the $E_{n / 2}$ re-
presentations of $C_{n v}^{\prime}$ and D_{n}^{\prime} (both for $n=3,5,7$, \ldots), the $E_{n / 2 g}$ and $E_{n / 2 u}$ representations of $D_{n d}^{\prime}(n=$ $3,5,7, \ldots)$, and the fourfold degenerate representations of T^{\prime} and T_{h}^{\prime}.

Differences in orientation

In many cases where the subgroup contains fewer twofold axes and/or reflexion planes than the supergroup, it is possible to ascend in more than one way according to which axes or planes of the supergroup correspond to those of the subgroup. Different supergroup tables then arise when at least one of the following conditions is fulfilled.

Table 5. Ascent in symmetry from $C_{(2 n+1) v}$ groups

	$\sigma_{v} \rightarrow \sigma_{v}{ }^{*}$			
$C_{6 p v}$	$C_{(6 p+3) v}$	$\sigma_{v} \rightarrow \sigma_{v}{ }^{*}$		
$C_{3 v}$	$C_{1}+B_{1}+\sum^{\prime} p-1 E_{3 r}$	$A_{1}+\sum_{p} E_{3 r}$	$A_{1 g}+A_{2 u}+B_{1 u}+B_{2 g}$	$A_{d}+T_{2}$
A_{1}	$A_{2}+B_{2}+\sum_{p-1}^{\prime} E_{3 r}$	$A_{2}+\sum_{p} E_{3 r}$	$A_{1 u}+A_{2 g}+B_{1 g}+B_{2 u}$	$A_{2}+T_{1}$
A_{2}	$\sum_{p}\left(E_{3 r-2}+E_{3 r-1}\right)$	$\sum_{p+1} E_{3 r-2}+\sum_{p} E_{3 r-1}$	$E_{1 g}+E_{1 u}+E_{2 g}+E_{2 u}$	$E+T_{1}+T_{2}$
E	$\sum_{p}\left(E_{(6 r-5) / 2}+E_{(6 r-1) / 2)}\right)$	$\sum_{p+1} E_{(6 r-5) / 2}+\sum_{p} E_{(6 r-1) / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}+E_{5 / 2 g}+E_{5 / 2 u}$	$E_{1 / 2}+E_{5 / 2}+G_{3 / 2}$
$E_{1 / 2}$	$2 \sum_{p} E_{(6 r-3) / 2}$	$E_{(6 r+3) / 2}+2 \sum_{p} E_{(6 r-3) / 2}$	$2 E_{3 / 2 g}+2 E_{3 / 2 u}$	$2 G_{3 / 2}$
$E_{3 / 2}$				

$C_{(2 p+1) v}$	$D_{(2 p+1) d}$	$D_{(2 p+1) h}$
A_{1}	$A_{1 g}+A_{2 u}$	$A_{1}^{\prime}+A_{2}^{\prime \prime}$
A_{2}	$A_{1 u}+A_{2 g}$	$A_{1}^{\prime \prime}+A_{2}^{\prime}$
E_{r}	$E_{r g}+E_{r u}$	$E_{r}+E_{r}^{\prime \prime}(1 \leq r \leq p)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}$	$E(2 r-1) / 2+E_{(4 p-2 r+3) / 2}(1 \leq r \leq p)$
$E_{(2 p+1) / 2}$	$E_{(2 p+1) / 2 g}+E_{(2 p+1) / 2 u}$	$2 E_{(2 p+1) / 2}$

* For σ_{d} instead of σ_{v} in the supergroup, interchange B_{1} and B_{2} (irrespective of any parity label) on the right-hand side of the Table.

Table 6. Ascent in symmetry from $D_{2 n}$ groups

D_{2}				
A	$A_{1}+B_{1}+\sum^{\prime}{ }^{p-1} E_{2 r}$ $A_{1}+\sum p E_{2 r}$ $A_{2}+B_{2}+\sum_{p-1}^{\prime} E_{2 r}$ $A_{2}+\sum p E_{2 r}$ $\sum_{p} E_{2 r-1}$ $B_{1}+\sum p E_{2 r-1}$ $\sum p E_{2 r-1}$ $B_{2}+\sum p E_{2 r-1}$			
B_{1}				
B_{2}				
B_{3}				
$\bar{E}_{1 / 2}$	$\sum_{2 p} E_{(2 r-1) / 2} \sum_{2 p+1} E_{(2 r-1) / 2}$			
D_{2}	T	$\underset{O}{C_{2}^{z}} \rightarrow C_{2} ; C_{2}^{x}+C_{2}^{y} \rightarrow 2 C_{2}^{*}$	$\begin{gathered} 3 C_{2} \\ O \end{gathered} \rightarrow 3 C_{2}$	$\begin{aligned} & C_{z}^{2} \rightarrow C_{2}^{*} \\ & D_{2 p d} \\ & \hline \end{aligned}$
A	$A+E$	$A_{1}+E+T_{2}$	$A_{1}+A_{2}+2 E$	$A_{1}+B_{1}+\sum^{\prime}{ }^{\prime}{ }^{-1} E_{2 r}$
B_{1}	T	$A_{2}+E+T_{1}$	$T_{1}+T_{2}$	$A_{2}+B_{2}+\sum^{\prime}{ }_{p-1} E_{2 r}$
B_{2}, B_{3}	T	$T_{1}+T_{2}$	$T_{1}+T_{2}$	$\sum_{p} E_{2 r-1}$
$E_{1 / 2}$	$E_{1 / 2}+G_{3 / 2}$	$E_{1 / 2}+E_{5 / 2}+2 G_{3 / 2}$	$E_{1 / 2}+E_{5 / 2}+$	$\sum_{2 p} E_{(2 r-1) / 2}$

$D_{2 p+2}$	$D_{(2 p+2) d}$
A_{1}	$A_{1}+B_{1}$
A_{2}	$A_{2}+B_{2}$
B_{1}, B_{2}	E_{p+1}
E_{r}	$E_{r}+E_{2 p+2-r}(1 \leq r \leq p)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2}+E_{(4 p-2 r+5) / 2}(1 \leq r \leq p+1)$

	$C_{2}^{\prime} \rightarrow C_{2}^{\prime} \ddagger$ D_{4}
A_{1}	$O_{1}+E$
A_{2}	T_{1}
B_{1}	T_{2}
B_{2}	$A_{2}+E$
E	$T_{1}+T_{2}$
$E_{1 / 2}$	$E_{1 / 2}+G_{3 / 2}$
$E_{3 / 2}$	$E_{5 / 2}+G_{3 / 2}$

* Permutation of $\left\{C_{2}^{z}, C_{2}^{y}, C_{2}^{x}\right\}$ in D_{2} implies a corresponding permutation of $\left\{B_{1}, B_{2}, B_{3}\right\}$ on the left-hand side of the Table.
\dagger For $C_{2}^{\prime \prime}$ instead of C_{2}^{\prime}, interchange B_{1} and B_{2} on the right-hand side of the Table
\ddagger For $C_{2}^{\prime \prime}$ instead of C_{2}^{\prime} in D_{4}, interchange B_{1} and B_{2} on the left-hand side of the Table.
(1) A twofold axis in the subgroup correlates with either the principal axis or a subsidiary twofold axis of the axial point groups $D_{2 n d}$ and $D_{2 n h}(n \geq 1)$ or the cubic groups O and O_{h}.
(2) A set of three twofold axes in the subgroup correlates with either the three principal or one principal and two subsidiary twofold axes in the cubic point groups O and O_{h}.
(3) A reflexion plane in the subgroup correlates with either the horizontal $\left(\sigma_{h}\right)$ or a vertical plane in a $D_{n h}(n \geq 2)$ supergroup.
(4) A set of reflexion planes in the subgroup correlates with either only vertical planes or vertical plane(s) and the horizontal plane in a $D_{n h}(n \geq 2)$ supergroup.
(5) The supergroup contains representations which are geometrically equivalent, i.e. differences in character systems arise only for classes of geometrically equivalent elements such that the systems can be considered as permutation variants. In practice such representations are all the B-type representations of the point groups $C_{2 n v}, D_{2 n}$ and $D_{2 n h}(n \geq 1)$.
Tables specifying the orientation of the point groups at Wyckoff sites within the point group of a crystal (i.e. the crystal class) have been published earlier (Boyle, 1971).

The tables

In order to minimize the area of these tables (Tables 1 to 11), it was necessary to restrict the ascents to those

Table 7. Ascent in symmetry from $D_{2 n+1}$ groups

D_{3}	O	I
A_{1}	$A_{1}+T_{2}$	$A+G+H$
A_{2}	$A_{2}+T_{1}$	$T_{1}+T_{2}+G$
E	$E+T_{1}+T_{2}$	$T_{1}+T_{2}+G+2 H$
$E_{1 / 2}$	$E_{1 / 2}+E_{5 / 2}+G_{3 / 2}$	$E_{1 / 2}+E_{7 / 2}+G_{3 / 2}+2 I_{5 / 2}$
$E_{3 / 2}$	$2 G_{3 / 2}$	$2 G_{3 / 2}+2 I_{5 / 2}$

D_{5}	I
A_{1}	$A+H$
A_{2}	$T_{1}+T_{2}$
E_{1}	$T_{1}+G+H$
E_{2}	$T_{2}+G+H$
$E_{1 / 2}$	$E_{1 / 2}+G_{3 / 2}+I_{5 / 2}$
$E_{3 / 2}$	$E_{3 / 2}+G_{3 / 2}+I_{5 / 2}$
$E_{5 / 2}$	$2 I_{5 / 2}$

	$\begin{array}{l}C_{2}^{\prime} \rightarrow C_{2}^{\prime} * \\ D_{2 p+1}\end{array}$		
$D_{4 p+2}$			
A_{1}	$A_{1}+B_{1}$		
A_{2}	$A_{2}+B_{2}$		
E_{r}	$E_{r}+E_{2 p-r+1}(1 \leq r \leq p)$		
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2}+E_{(4 p-2 r+3) / 2}(1 \leq r \leq p)$		
$E_{(2 p+1) / 2}$	$2 E_{(2 p+1) / 2}$		
$D_{2 p+1} \rightarrow$	$D_{(2 p+1) h}:$ This Table is identical with that for		
$C_{(2 p+1) v} \rightarrow D_{(2 p+1) h}$			

[^1]in which there is no intermediate subgroup, e.g. $C_{2} \rightarrow C_{2 v}, C_{3} \rightarrow T$, other ascents being attained by a multi-stage process, e.g. $C_{4 v} \rightarrow D_{4 h} \rightarrow O_{h}$. Some useful diagrams for finding some such routes have been given by Boyle (1969). Where significant orientational differences occur, changes in notation and the need for working with representations of unconventional point groups (e.g. where the z axis is not chosen as the principal axis) make the calculation quite difficult for anyone not completely familiar with the elements of point groups, so that all such ascents have been included. It has been possible to incorporate many as footnotes giving instructions for altering a given table. All the point groups appearing in the tables are conventional, so that local frames of axes are used in the context of molecules or crystals. Not all of the orientational variants are represented crystallographically since some of the differences are merely ones of labelling of equivalent planes or axes so that geometrically the ascents are identical. However, when relative differences in labelling can be distinguished geometrically, these may occur crystallographically.

When a centre of symmetry is present in both subgroup and supergroup, the ascent between the corresponding uncentrosymmetric groups should be used, the subscripts g or u being added as required. Ascents involving addition of a centre of symmetry only have not been tabulated (with the sole exception of $T_{d} \rightarrow O_{h}$ to avoid notational complications) since each representation gives one gerade and one ungerade without other change of notation. The group products useful for these cases are: $C_{2 p-1} \times S_{2}=S_{4 p-2} ; C_{2 p} \times S_{2}=C_{2 p h}$; $C_{(2 p-1) h} \times S_{2}=C_{(4 p-2) h} ; C_{2 p v} \times S_{2}=D_{2 p h} ; C_{(2 p+1) v} \times S_{2}=$ $D_{(2 p+1) d} ; D_{2 p} \times S_{2}=D_{2 p h} ; D_{2 p+1} \times S_{2}=D_{(2 p+1) d} ; D_{2 p d} \times$ $S_{2}=D_{4 p h} ; I \times S_{2}=I_{h} ; O \times S_{2}=O_{h} ; S_{4 p} \times S_{2}=C_{4 p h} ; T \times$ $S_{2}=T_{h}$.

Where feasible, general tables have been produced using the variable p, which consistently takes integral values greater than or equal to one. However, such general tables have been restricted to those involving a constant subgroup, or those in which the ratio $h_{>} / h_{<}$is constant. To simplify printing the summations over the dummy index r have been abbreviated so that
$\sum_{r=1}^{r=p}$ becomes \sum_{p} and $\sum_{r \geq 1}^{r \leq p-1}$ becomes \sum_{p-1}^{\prime}. This latter type
of summation has no terms unless both conditions on r are met, which is the case in this paper when $p \geq 2$. If a group has only one doubly-degenerate (single-valued) representation, then the E_{1} generated by the general formulae should be read E. The point groups which are still occasionally known as C_{s}, C_{i} and $C_{3 i}$ have been written $C_{1 h}, S_{2}$ and S_{6} and thus fitted into the corresponding families of groups.

Finally, the ascents in symmetry for the double groups have been condensed into the same table as those for the corresponding ordinary point groups, the correlations between the double-valued representations

Table 8. Ascent in symmetry from the group $D_{2 d}$

$D_{2 d}$	$\begin{aligned} & \sigma_{d} \rightarrow \sigma_{d}{ }^{*} \\ & D_{4 n} \\ & \hline \end{aligned}$	$D_{6 a}$	T_{d}	$\underset{O_{h}}{\sigma_{d}} \rightarrow \sigma_{h}$	$\begin{aligned} & \sigma_{d} \rightarrow \sigma_{d} \\ & O_{h} \end{aligned}$
\bar{A}_{1}	$A_{1 g}+B_{1 u}$	$A_{1}+E_{4}$	$A_{1}+\bar{E}$	$A_{1 g}+E_{g}+T_{2 u}$	$A_{1 g}+A_{2 u}+E_{g}+E_{u}$
A_{2}	$A_{2 g}+B_{2 u}$	$A_{2}+E_{4}$		$A_{2 u}+E_{u}+T_{1 g}$	$T_{15}+T_{2 u}$
B_{1}	$A_{1 u}+B_{1 g}$	$B_{1}+E_{2}$	$A_{2}+E$	$A_{1 u}+E_{u}+T_{2 g}$	$A_{1 u}+A_{2 g}+E_{6}+E_{u}$
B_{2}	$A_{2 u}+B_{2 g}$	$B_{2}+E_{2}$	T_{2}	$A_{2 g}+E_{g}+T_{1 u}$	$T_{1 u}+T_{2 B}$
E	$E_{g}+E_{u}$	$E_{1}+E_{3}+E_{5}$	$T_{1}+T_{2}$	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$	$T_{1 g}+T_{1 u}+T_{2 g}+T_{2 u}$
$E_{1 / 2}$	$E_{1 / 2}+E_{7 / 2}$	$E_{1 / 2}+E_{5 / 2}+E_{9 / 2}$	$E_{1 / 2}+G_{3 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}+G_{3 / 2 g}+G_{3 / 2 u}$	$E_{1 / 2 g}+E_{1 / 2 u}+G_{3 / 2 g}+G_{3 / 2 u}$
$E_{3 / 2}$	$E_{3 / 2}+E_{5 / 2}$	$E_{3 / 2}+E_{7 / 2}+E_{11 / 2}$	$E_{5 / 2}+G_{3 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}+G_{3 / 2 g}+G_{3 / 2 u}$	$E_{1 / 2 \xi}+E_{1 / 2 u}+G_{3 / 2 g}+G_{3 / 2 u}$

* For σ_{v} instead of σ_{d} in the supergroup, interchange B_{1} and B_{2} (irrespective of the parity label) on the right-hand side of the Table.
being separated from those between the single-valued representations by a horizontal line. Orientational differences are not relevant to ascents between double groups since the characters of the double-valued representations are all zero for the relevant reflexions and twofold rotations. The notation used for the doublevalued representations is that of Herzberg (1966) with analogous extensions to cover the groups he does not describe. In order to avoid the use of inconveniently small type in subscripts, $\frac{1}{2}, \frac{3}{2}$ etc. have been printed as $1 / 2,3 / 2$ etc.; representations such as $E_{1 / 2 g}$ and $G_{3 / 2 u}$ are thus to be read as $E_{\frac{1}{2} g}$ and $G_{\frac{3}{2} u}$.

The tables have not been restricted to crystallographic groups but they are only complete for point groups containing proper axes of symmetry of order up to six and improper axes of order up to twelve. In practice many other groups can be reached using the general formulae where these have been given.

Table 9. Ascent in symmetry from the group $D_{3 h}$

	$\sigma_{v} \rightarrow \sigma_{v}{ }^{*}$
$D_{3 h}$	$D_{6 h}$
A_{1}^{\prime}	$A_{1 g}+B_{1 u}$
A_{1}^{\prime}	$A_{1 u}+B_{1 g}$
A_{2}^{\prime}	$A_{2 g}+B_{2 u}$
$A_{2}^{\prime \prime}$	$A_{2 u}+B_{2 g}$
E^{\prime}	$E_{1 u}+E_{2 g}$
$E^{\prime \prime}$	$E_{1 g}+E_{2 u}$
$E_{1 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}$
$E_{3 / 2}$	$E_{3 / 2 g}+E_{3 / 2 u}$
$E_{5 / 2}$	$E_{5 / 2 g}+E_{5 / 2 u}$

[^2]Table 10. Ascent in symmetry from $S_{4 n}$ groups

S_{4}	S_{12}
A	$A+E_{4}$
B	$B+E_{2}$
E	$E_{1}+E_{3}+E_{5}$
$E_{1 / 2}$	$E_{1 / 2}+E_{5 / 2}+E_{9 / 2}$
$E_{3 / 2}$	$E_{3 / 2}+E_{7 / 2}+E_{11 / 2}$

$S_{4 p}$	$C_{4 p h}$	$D_{2 p d}$
A	$A_{g}+B_{u}$	$A_{1}+A_{2}$
B	$A_{u}+B_{g}$	$B_{1}+B_{2}$
E_{r}	$E_{r g}+E_{r u}$	$2 E_{r}(1 \leq r \leq 2 p-1)$
$E_{(2 r-1) / 2}$	$E_{(2 r-1) / 2 g}+E_{(2 r-1) / 2 u}$	$2 E_{(2 r-1) / 2}(1 \leq r \leq 2 p)$

Table 11. Ascent in symmetry from the groups T and T_{d}

T	T_{a}	O	I
A	$A_{1}+A_{2}$	$A_{1}+A_{2}$	$A+G$
E	$2 E$	$2 E$	$2 H$
T	$T_{1}+T_{2}$	$T_{1}+T_{2}$	$T_{1}+T_{2}+G+H$
$E_{1 / 2}$	$E_{1 / 2}+E_{5 / 2}$	$E_{1 / 2}+E_{5 / 2}$	$E_{1 / 2}+E_{7 / 2}+I_{5 / 2}$
$G_{3 / 2}$	$2 G_{3 / 2}$	$2 G_{3 / 2}$	$2 G_{3 / 2}+2 I_{5 / 2}$

T_{d}	O_{h}
A_{1}	$A_{1 g}+A_{2 u}$
A_{2}	$A_{1 u}+A_{2 g}$
E	$E_{g}+E_{u}$
T_{1}	$T_{1 g}+T_{2 u}$
T_{2}	$T_{1 u}+T_{2 g}$
$E_{1 / 2}$	$E_{1 / 2 g}+E_{1 / 2 u}$
$E_{5 / 2}$	$E_{5 / 2 g}+E_{5 / 2 u}$
$G_{3 / 2}$	$G_{3 / 2 g}+G_{3 / 2 u}$

References

Boyle, L. L. (1969). Acta Cryst. A25, 455.
Boyle, L. L. (1971). Acta Cryst. A27, 76.
Herzberg, G. (1966). Molecular Spectra and Molecular Structure, Vol. 3. New York: Van Nostrand.

[^0]: $C_{1 h} \rightarrow C_{(2 p+1) v}$: This Table is identical with that for $C_{2} \rightarrow D_{2 p+1}$ if the A and B representations of C_{2} are replaced by A^{\prime} and $A^{\prime \prime}$ respectively.

[^1]: * For $C_{2}^{\prime \prime}$ instead of C_{2}^{\prime} in $D_{4 p+2}$, interchange B_{1} and B_{2} on the right-hand side of the Table.

[^2]: * For σ_{v} instead of σ_{d} in the supergroup interchange B_{1} and B_{2} (irrespective of the parity label) on the right-hand side of the Tabel.

