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k T  
(u,,(~)u~,(~))= W y- (a,-%,(#~)+ 2" 

hZO,a 
12kTM~ 

h 4 
¢%~(,,~), T> Oo/2 . (18) 

720k3TN3M~ T 

Equation (18) describes the vibration of an atom in a 
crystal lattice for temperatures above half the Debye 
temperature of the lattice. From the quantities 

l I (u~(~)ua(~)), the anisotropic Debye-Waller B values can 
be obtained by well known methods (Cruickshank, 
1956). At high temperatures, T> Oo, only the first term 
in the right-hand part of equation (18) is of importance, 
and Debye-Waller B values become independent of 
the atomic masses. 

Two restrictions should be made. Equation (18) has 
been derived within the harmonic approximation 
which will certainly be violated at very high tem- 
peratures. The second restriction is in dealing with the 
temperature dependence of the two sums in equation 
(18). The matrix elements (~-1)~ B (k) and ~ a ( ~ )  are 
temperature dependent, via the interatomic forces 
which depend, for example, on the atomic distances. It 
is expected, however, that the sums will vary only very 
little with temperature. 

Example 

For a cubic lattice, the Debye-Waller B value of the 
~:th atom is obtained from equation (18) as: 

k T  ~ h 2 
B~ = 8~ 2 ~ ( ,v-  1)~(L) + 12krM~ 

h 4 
- (191 

In the above expression the first term in the right-hand 
part is independent of the atomic mass. The other two 
terms are inversely proportional to the atomic mass and 
to the square of the atomic mass. In general, it is very 
difficult to evaluate the two sums of equation (19), 
because, for this, a detailed knowledge of the atomic 
forces is required. We have determined the two sums 
by a least-squares fit of equation (19), for 12 tempera- 
tures, to KBr B values calculated by Reid & Smith 
(1970). The Debye temperature of KBr is about 160°K 
(Reid & Smith, 1970) and the 12 temperatures chosen 
range from 75 °K (about half the Debye temperature) 
up to 295 °K. Results are shown in Table 1. 

The results in Table 1 show the various contributions 
to B~ at temperatures above the Debye temperature 
(for KBr 160°K) the main contribution to the Debye- 
Waller B values comes from the mass-independent 
term of equation (19). Table 1 also shows that equa- 
tion (19) describes very well, in a large temperature 
region, the temperature dependence of both the Debye- 
Waller B values of KBr. 

References 

CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747. 
KEFFER, C., HAVES, T. M. & BIENENSTOCK, A. (1968). 

Phys. Rev. Letters, 21, 1676. 
KORHONEN, U. & LINKOAnO, M. (1966). Ann. Acad. Sci. 

Fenn. A VI, No. 195. 
MARADUDIN, A. A., MONTROLL, E. W. & WEISS, G. H. 

(1963). Theory of Lattice Dynamics in the Harmonic 
Approximation. New York: Academic Press. 

RACCAH, P. M. • ARNOTT, R. J. (1967). Phys. Rev. 153, 
1028. 

REID, J. S. & SMITH, T. (1970). J. Phys. Chem. Solids, 31, 
2689. 

SANGER, P. L. (1969). Acta Cryst. A25, 694. 
WALLER, I. (1925). Dissertation, p. 27. Uppsala. 

Acta Cryst. (1972). A28, 172 

The Method of Ascent in Symmetry. I. Theory and Tables 

BY L. L. BOYLE 

University Chemical Laboratory, Canterbury, Kent, England 

(Received 3 December 1970) 

Supergroup tables are presented whereby a representation of a subgroup can be correlated with those 
representations of the supergroup which are obtained on ascent in symmetry. The method of derivation 
is explained and various orientations of the subgroup with respect to the supergroup considered. The 
tables also include the correlations between the double-valued representations of the corresponding 
double groups. 

Introduction 

The well-known process of descent in symmetry allows 
one to discuss how the representations of a given group 
decompose into representations of a subgroup. Tables 

have been constructed to facilitate many such correla- 
tions and these are very laseful in numerous physical 
problems, e.g. the splitting of atomic energy levels in 
a crystal field. 

The reverse correlation, in which we ascend in 
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symmetry from a grmap to a supergroup is less well 
known and supergroup tables have not been published 
for all the cases of interest. In this series of papers it 
will be shown that such tables may rigorously be ap- 
plied to a wide variety of physical problems. These will 
include the rapid construction of molecular orbitals, 
the determination of molecular and lattice vibrations, 
the study of problems concerning electron and nuclear 
spins and the additivity of the tensorial properties of 

bonds and atoms, e.g. polarizability. The first paper 
contains the general mathematical theory and the 
tables which are of use in all the applications. 

Theory 

Let us consider the ascent in symmetry from the point 
group Cz to C2v. The representations of these groups 
can be specified by considering their behaviour with 

cl  I 

Table 1. Ascent in symmetry from C2.+~ groups 

Czv C2~+1 
A I A + B +  ~'V-1 Er A-l- EIo Er 
Bl12 [ ~o E(2r-1)12 B(2v+l)/2 + ~o E(2r-1)12 

C3 C6v C6v+3 T 
A A + B +  ~'v-1 E3r A+ Y.~ E3r A + T  
E ~io(E3r-2 + E3r-x) Y.v+I Ear-2 + ~,v E3r-1 E+ 2T 
B3/2 
Ell2 

~20 E(6r-3)/2 B(6~+3)12+ ~.~ E(6r-3)12 
~V (E(6r-5)12 + E(6r-1)12) ~v+l E(6r-5)/2 + ~o E(6r-1)12 

C2p-I C(2ao-1)h 
A A' + A" 
Er E ; + E  7 (1 <_r<_p- 1) 
B(2~-1)/2 
E(2r-1)12 

E(2~o-1)12 
E(2r-1)12 + E(41o-2r-1)/2 (1 _ r_<p - 1) 

C2ao+l C(2~+l)v or D21o+l 
A AI+A2 
Er 2E~ (1 <r__p) 
B(2ao+À)/2 
E(2r-1)12 

E(2io+1)/2 
2E(2r-1)/2 (1 <r<p) 

G312 
2E1/z + G3/2 

Table 2. Ascent in symmetry from C2. groups 

C2 --+ C~* C2 -+ C2 
C2 C4~o C4p+2 1)2 D4v+2 
A A + B +  ~'~-1 Ezr A+ ~ E2r A+BI  A l+A2+2~v  E2r A I + B I +  ~..2v Er 
B ~.2~ Ezr-1 B+ ~v Ezr-1 Bz+B3 BI+Bz+2~.p  Ezr-1 Az+B2+ ~.2~o Er 
Ell2 ~.2~o E(2r-1)/2 ~.2~+1 E(2r-l)12 2E1/2 2~v+1 E(2r-1)12 2~Io+1 E(2r-1)12 

C2--+C2 C2-+ C~t 
(72 D2/~+l D4~ D4~ 
A AI+  ~p Er AI+Az+BI+B2+2~ '~- I  E2r A I + B I +  ~.2v-1 Er 
B A2+ ~o Er 2~v E2r-1 A2+B2+ ~2~o-1 Er 
Ell2 E(2v+l)/2+2~.v E(2~o-1)/2 2~2v E(2r-1)12 2~.2v E(2r-a)/2 

C2 -+ C;t  
D4:o+2 

C2-+ Cz Cz-+G Cz-+ C2 C2~C~ 
Dza Dza 0 0 C2 

A AI+A2+BI+B2 Aa+Bz+E AI+A2+2E+TI+T2  A I + E + T I + 2 T 2  
B 2E Az+B2+E 2TI+2Tz Az+E+2TI+T2 
El/2 2El/2 + 2E3/z 2EI/z + 2E3/2 2E1/2 + 2E5/2 + 4G3/2 2E1/2 + 2E5/2 + 4G3/2 

C2~ S4p C2~v or D2v (except D2) 
A A + B  AI+A2 
B E~ B1 +B2 
Er Er+ Ezv-r 2Er(1 <_r<p-- 1) 
E(2r-1)lZ E(2r-1)12 + E(4p-2r+1)/2 2E(2r-1)lZ (1 <_ r _ p )  

y x * Interchange of {C~, C 2, C2 } in D2 requires interchange of {Bx,B2,B3} respectively. 
1" Interchange of C~ and C 2' in Dzn+2 requires interchange of B1 and B2. 
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respect to the generators of these groups. These are the 
key elements from which all the others may be derived 
and will be denoted in braces e . g .  (C2} and (C2, (7"0 xz} 
for the point groups Cz and Czo respectively. In as- 
cending from Cz to Czo it is necessary to specify how 
the representation of Czo obtained will behave with 
respect to the new generator, ao~. All possibilities must 
be accounted for and so we obtain the supergroup 
table 

A A~+A2 
B B~+B2 

where A and B representations are respectively symmet- 
ric and anti-symmetric to the (72 operation and the 
subscripts 1 and 2 respectively denote symmetry and 
anti-symmetry to the a xz reflexion. If h< and h> denote 
the orders of the sub- and supergroup respectively, 
the character system of the representation of the super- 

group obtained by ascent in symmetry will be such that 
(1) for elements in both groups the character will be 

h>/h < times the corresponding character of the re- 
presentation of the subgroup; 

(2) for elements occurring only in the supergroup all 
characters are zero. 

This is a mathematical process by which all super- 
group tables may be obtained, but it is much quicker to 
take advantage of the subgroup tables, many of which 
have already been published. The basis for this is that 
if two representations are related by descent in symme- 
try, they must also be related by ascent in symmetry. 
The subgroup table C2~ ~ (72 shows that the A repre- 
sentations of C2 are only obtained from A~ and A2 
representations of C~o so we should expect the super- 
group table C, --+ Czo to contain the entry A --~ Aa + A2. 
In applying this method, two points must be taken into 
account in more difficult cases: 

Table 3. Ascent in symmetry from C~2,,-~)h groups 

Cln C(2=o+l)n D(2v+ i)n D (2v+ l)h C2~ov Dzh 
A t A'+ Y v E~ A'~+A'2+2~.v E[ A~+A2'+ ~ {E~+E~ t} A I + B I +  ~.'~-1 Er Ag+Blg+B2u+B3u 
A'" A"+ ~v E 'r"  AI'+A'2"+2Y p JE/ ,4~1"+A'2+ Ep {Er+L;'} A2+B2+ ~':o-i Er Au+Blu+B2g+B3, 
El12 ~2p+l E(2r-1)12 2 ~.2~+1 E(2r-1)12 2 ~2:o+1 E(2r-1)12 2 ~p E(2r-i)12 2E~12, + 2Ellzu 

G ---+ Gh G ---+ l~v a[ 
C1 n D4.pn D4~on 
A" Alg+ A2a+ Blg+ B2g+ 2 Y~ E(2r-1)u+ 2 ~'v-1 E2rg Ala+ A2u+ Blg+ B2u+ Y.2~-1 {Erg+ Eru} 
A" A]u+ A2u+ Blu+ B2u+ 2 Y.v E(2r-])g+ 2 ~'~-I E2ru Alu+ A2g+ Biu+ B2g+ Y2v-~ {Er,+ Eru} 
E~/2 2 Y2~ {E(2r-1)/2g + E(2r-1)/2u} 2 Y~2~o {E(2r-a)12a + E(2r-1)/2u} 

I ~7 ----> (Th O" ---> ~Tvt 
Clh D(4~o+2) n D(4~o+2) h 
A" Alg+ Aza+ Biu+ B2u+ 2 Yv {E(2r-2)u+ E2rg} Atg+ A2u+ Blu+ B2g+ ~2~ {Erg+ Eru} 
A'" Axu+ A2~+ Blg+ Bzg+ 2 Sv {E(2r-2~g+ E2~u} Al~+ A2g+ Big+ B2u+ ~2v {Erg+ Eru} 
Ell2 I 2~2~+1 {E(2r-1)12g+ E(2r-1)12u} 2~.2a0+1 {E(2r-i)12g+ E(2r-1)12u} 

Oa On Clh  

A" AIg+ A2g+ 2Eg+ Tlg+ 2Tlu+ T2g+ 2T2u Alg+ A2u+ Eg+ Eu+ Tlg+ 2Tlu+ 2T2g+ T2u 
A" Aau+ Azu+ 2Eu+ 2Tlg+ Tlu+ 2T2g+ T2u Alu+ Azg+ Eg+ Eu+ 2TIg+ Tau+ T2g + 2T2u 
E1/2 2E1/2g + 2E1/2u + 2EsIzg + 2EsI2u + 4G3/2g + 4G3/2u 2E1/zg + 2El12u + 2Es12~ + 2Es/2u + 4G3/2g + 4G3/2u 

C(2~o-1)h 
A t 
A tt 

E2r m | 
e£_1 
~r  

E(2r-1)lZ 

C(4~-2) h C(2p+l)h 

Ag + Bu A" 
Au+ Ba A'" 
E(2r-1)u+E(2~-2r)g (1 <_r<_p-- 1) E~ 
E(2r-1)g+E(2~-2r)u (1 <_r<_p-- 1) E~' 
E2rg+ E(21o-2r-1)u ( l_r_<p--2)  
E2ru + E(z~o-2r-a)g (1 _< r _<p - 2) 
E(2r-1) / zg+ E(2r-1)12u (1 <_r<2p- 1) 

E(2r-1)12 

D(2p+l)h 
AI+ A'~ 
A;" + At" 
2E; (1 <-r<-v) 
2E~' (1 <r<_p) 
2E(2r-1)12 (1 <r<_2p+ l) 

Clh-+ C(2v+l)v: This Table is identical with that for C2 ~ D2~+l iftheA and B representations of C2 are replaced by A' and A" 
respectively. 

* In the group C2v, take a xz-- av and avz = aa. 
t For aa instead of av, interchange B1 and B2, parity labels being unchanged where relevant. 
:[: Permutation of {a ~u, a xz, avz} implies a corresponding permutation of {Ba, B2, B3} irrespective of the parity label. 
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CEv 
hi  
A2 
B1 
B2 
Ell2 

c2v 

Table 4. Ascent in symmetry from C2.~ groups 

C4vv 
U xz ~ O'v*t 
C(4p+2)v 

A I + B I +  ~'v-1 E2r 
A 2 + B 2 +  ~ 'v - i  E2r 
~2o E2r-1 
XP gzr-1 

A1 + Yv E2~ 
A2+ ~.v E2r 
B1 + "fv E2r-1 
B2 dr ~V E2r-1 

~,2p E(2r-D/2 ~2~+1 E(2r-1)12 

{T xz ~ axzt 
C2 --+ C~$ 
D2a 

2av -~ 2try* a xz --+ o'h; ayZ ~ av*t 
Dgh Dgh 

A1 
A2 
B1 
B2 

Ag+ Blu Alg+ A2u+ Blg+ B2u Alg+ Blg+ Eu 
Au+ Blg Alu+ A2g+ Blu+ B2g Alu+ Bludr Eg 
B2g dr B3u Eg + Eu A2g dr Bzg dr Eu 
B2u + B3g Eg + Eu A2u + B2u dr Eg 

E~ 12 

C2v 

EI/2g dr E1/2u 

C2 ----> C2, (7 xz -+ tTv*~ 
D6~ 

Ell2g dr Ell2 u dr E3/2g dr E3/2u Ell2g dr Ell2u dr E312g dr E312u 

C2 -+ (7"2; a= -+ aht § 
D6h 

A1 
A2 
Bx 
B2 
E~/2 

C2v 
al  
A2 
B1 
B2 
El12 

AIg+ A2u+ E2g+ E2u 
Alu+ A2g+ E2g+ E2u 
Blu+ B2g+ Elg+ Elu 
Blgdr B2udr Elgdr Elu 

Algdr Blu dr Elu dr E2e, 
Aludr Blgdr Elgdr E2u 
A2g + B2u + Elu + E2g 
A2u+ B2gdr Elg+ E2u 

E1/2g + E1/2u + E312g + E3/2u + Es/2g dr Es/2u EI/2g + Ell2u dr E3/2g + E3/2u dr Es/2g dr EsI2u 

fT xz --+ O'h'~ 
D(2p+l)h D2pd 

A;'+ 7.~ F_.;" 
A~ + ~ E; 
A;' + Zv E;" 

A I + B 2 +  ~'v-1 E2r 
A2 dr B1 + ~'p-1 E2r 
Ev E2v-1 
Yv E2~-1 

~2P+l E(2r-1)/2 ~2~0 E(2r-1)/2 

C2v 
A1 
A2 
B1 
B2 
E m  

2cry --+ 20"h 
On 

2try -+ 2aa 
Oh 

trx~ ---> ah; au~ ~ aat 
On 

Alg+ A2g+ 2Eg+ Tlu+ T2u 
Alu+ A2u+ 2Eu+ TIg+ T2g 
Tlg+ T~.+ Tz~+ T2. 
TI,+ Tlu+ T2g+ T2,, 

Alg+ A2u+ Eg+ Eu+ Tlu+ T2g 
Alu+ A2g+ Ea+ T2u+ Eu + Tlg 
Tlg+ Tlu+ T2g+ T2u 
Tlg+ Tlu+ T2g+ T2u 

Alg+ Eg+ Txu+ Tzg+ T2,, 
Alu+ E~+ Tlg+ T2g+ Tzu 
A2g+ Eg+ Tlg+ Tlu+ T2u 
A2u+ E~+ Tag+ I"1,,+ T2g 

Ell2g + El/2u + E512g dr E512u dr 2G3/2g Ell2g + Ell2u + EsI2g + Esu/2 + 2G312a Ell2g + Ell2u + E3/2g dr E3/2u dr 2G3120 
+ 2G3u/2 + 2G3/2u + 2G3u12 

C2v~ 
A1 
A2 
B1, B2 
Er 

E(2r-1)12 

D2va 
A1 + B2 
A2+B1 
Ep 
Er+E2v-r ( l _ < r < p -  1) 
E(2r-1)/2 + E(4p-2r+l)/2 (1 _~< r _~<p) 

C4v~ 
A1 
A2 
B1 
B2 
E~ 
E(2r-1)12 

O'v ~ Uv* 
Da~oh C(42o+2)v 

Alg+ Azu A1 
Alu+ A2g A2 
Big + B2u B1 
B1 u + B2g B2 
Erg+Eru (1 <r<_2p- 1) Er 
E(2r-1)/2g + E(zr-1)lZu (1 __< r < 2p) E(2r-1)/2 

O'v ---~ (7"0* 
D(4~+2)  h 

Ala+A2u 
Alu + A2g 
Blu + B2g 
Big + B2u 
E~g+E~,, (1 <r_<2p) 
E(2r-1)/2g+ E(2r-1)/zu (1 <r<_2p+ 1) 

* For tra instead of try in the supergroup, interchange B1 and B2 (irrespective of any parity label) on the right-hand side of 
the Table. 

t For auz instead of tr xz in C2v interchange B1 and B2 on the left-hand side of the Table. 
.~ Permutation of {C~, C~, C~} in O2h implies a corresponding permutation of {B1, B2, B3}, irrespective of the parity label, on 

the right-hand side of the Table. 
§ For C2' instead of C 2, proceed as footnote marked*. 
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(1) 

(2) 

if on descent in symmetry, an irreducible repre- 
sentation of the subgroup occurs more than once, 
then on ascent in symmetry that number of the rep- 
resentation of the supergroup will be obtained from 
the representation of the subgroup, except when 
the representation of the supergroup is degenerate 
and separable, i.e. it consists of a complex con- 
jugate pair of representations, in which case each 
member of the pair should be treated separately. 

The separable representations are the doubly- 
degenerate representations of the point groups 
C~, C,~, (both for n > 3), S2,,(n >_ 2), T and Th, the 

presentations of C~,o and D:, (both for n =3,  5, 7, 
• . .  ), the E,/2g and En/2u representations of D'~e(n = 
3, 5, 7, . . .  ), and the fourfold degenerate repre- 
sentations of T'  and T~. 

D i f f e r e n c e s  in o r i e n t a t i o n  

In many cases where the subgroup contains fewer two- 
fold axes and/or reflexion planes than the supergroup, 
it is possible to ascend in more than one way according 
to which axes or planes of the supergroup correspond 
to those of the subgroup. Different supergroup tables 

doubly degenerate representations of the double,~ then arise when at least one of the following conditions 
groups C'~(n>3),C',h(n> 1), S; ,(n>2),  the E,/2 re- lk is  fulfilled. 

C3v 
hi  
.,42 
E 
Ell2 
E3/2 

Table 5. Ascent in symmetry from C(2,,+~)~ groups 

~v ~ £Tv* O'v ~ Gv* 
C6vv C(6p+3)v D6n Ta 

AI+BI+  ~'~o-1 E3r AI + ~v E3r Alg+ A2u+ Blu+ B2g AI+ T2 
Az+B2+ ~'v-1 E3r A2+ ~.p E3r Alu+A2g+Bla+B2u A2+ T1 
~ (E3r-2+ E3r-1) ~0+1 E3r-2+ ~.v E3r-1 EIg+ Elu+ E2g+ E2u E+ TI+ T2 
~p (E(6r-5)/2 + E(6r-1)/2) ~20+1 E(6r-5)/2 + ~p E(6r-1)/2 
2 Y~ E(6r-3)/2 E(6r+3)/2 + 2 ~ E(6r-3)/2 

Ell2g + E1/2u + E512g + Es/2u 
2E3/2g + 2E312u 

El~2 + E5/2 + G3/2 
2G3/2 

C(2p+l)v D(2p+l)a~ D(2p+l)h 
A1 Ala+A2u A~+A'2" 
A2 Alu+A2e A~'+A2 
Er Erg+ Eru E'r + E r" (1 <r<p) 
E(2r-1)12 E(2r-1)/2g + E(2r-1)12u E(2r-1)12 + E(4p-2r+3)/2 (1 <_ r_<p) 
E(2v+l)/2 E(2ao+l)/2g + E(2p+I)/2u 2E(2v+l)/2 

* For a~ instead of cro in the supergroup, interchange BI and B2 (irrespective of any parity label) on the right-hand side of 
the Table. 

D2 
A 
B1 
B2 
B3 
E1/2 

DE 
A 
B1 
B2, B3 

Table 6. Ascent in symmetry from D2n groups 

3C2 ~ C2+ 2C'~; C~ ~ Ci* C~ ~ C2; C~-~ C'zt 
D4p D4~0+2 

A I + B I +  ~'ao-1 E2r Aid- ~.p E2r 
A2 + B2 + ~f7o-1 E2r A2 + ~.v E2r 
~ E2r-1 B1 + Xv E2,-x 
~o E2r-1 B2 + ~.10 E2r-1 
~2~ E(2r-1)12 ~~.2P+l E(2r-1)/2 

C i ~ C2 ; C~ + C~ ~ 2C[* 
T O 

3C2 --> 3C2 
0 

C~ z ~ C2" 
D2aoa 

A + E  A1 + E+  T2 
T A 2 + E +  T1 
T TI+ T2 

AI + A2+ 2E 
TI + 7'2 
T1 + T2 

A x + B I +  ~.'~o-1 E2r 
A2-t-B2+ ~'~-1 E2r 
Y~ E2r-1 

Ell2 E1/2 + G3/2 E1/2 + E5/2 + 2G3/2 E1/2 + E5/2 + 2G3/2 ~2~0 g(2r-1)12 

D2~+2 
a l  
A2 
B1, B2 
Er 
E(2r-1)/2 

D(2p+2) d D4 
AI + B1 A1 
A2+B2 A2 
Ev+l B1 
Er+ E2p+2-r (1 <_r<_p) B2 
E(2r-1)/2 + E(4p-2r+5)12 (1 < r _<p + 1) E 

Ell2 
E3/2 

c~-+ c~t 
0 
AI+E 
T1 
T2 
A2+E 
TI+ 7'2 
E1/2 + G3/2 
E5/2 + G3/2 

* Permutation of {C~, C_~, CI} in D2 implies a corresponding permutation of {B1, B2, B3} on the left-hand side of the Table• 
t For C~' instead of C2, interchange B1 and B2 on the right-hand side of the Table 
:~ For C'z" instead of C 2 in D4, interchange B1 and B2 on the left-hand side of the Table• 
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(1) A twofold axis in the subgroup correlates with 
either the principal axis or a subsidiary twofold 
axis of the axial point groups D2,a and D2,n(n > 1) 
or the cubic groups O and On. 

(2) A set of three twofold axes in the subgroup corre- 
lates with either the three principal or one prin- 
cipal and two subsidiary twofold axes in the cu- 
bic point groups O and On. 

(3) A reflexion plane in the subgroup correlates with 
either the horizontal (ah) or a vertical plane in 
a D,h(n > 2) supergroup. 

(4) A set of reflexion planes in the subgroup corre- 
lates with either only vertical planes or vertical 
plane(s) and the horizontal plane in a D,h(n > 2) 
supergroup. 

(5) The supergroup contains representations which 
are geometrically equivalent, i.e. differences in 
character systems arise only for classes of geo- 
metrically equivalent elements such that the sys- 
tems can be considered as permutation variants. 
In practice such representations are all the B-type 
representations of the point groups C2,~, D2n and 
Dz,h(n > 1). 

Tables specifying the orientation of the point groups 
at Wyckoff sites within the point group of a crystal 
(i.e. the crystal class) have been published earlier 
(Boyle, 1971). 

The tables 

In order to minimize the area of these tables (Tables 
1 to 11), it was necessary to restrict the ascents to those 

Table 7. Ascent in symmetry from D2n+l groups 

D3 0 I 
A1 A I + T 2  A + G + H  
A2 A2+ T1 T1 + T2+ G 
E E +  T1 + T2 T1 + T2+ G+2H 
E 1 / 2  E1/2+E5/2+G312 E1/2+E7/2+G3/2+215/2 
E3/2 2G3/2 2G3/2 + 215/2 

D5 
A1 
M2 
E1 
E2 
El~2 
E312 
E5/2 

A + H  
TI + T2 
T I + G + H  
T2+G+ H 
EI/2+G3/2+I5/2 
E3/2+G3/2+15/2 
215/2 

D2p+I 
hi  
,42 
Er 
E(2r-1)/2 
E(2p+l)I2 

c~-+ C;* 
D4p+2 
,41+ B1 
A2+ B2 
Er+ E2v-r+l (1 <_r<p) 
Et2r-I)/2 + E(4p-2r+3)/2 (1 ~ r_<p) 
2Ec2p+1)/2 

D2v+l--->D(2v+l)h: This Table is identical with that  for 
C(2p+l)v ~ O(2p+l)h. 

* For  C 2' instead of  C 2 in D4p+2, interchange B1 and B2 
on the r ight-hand side of  the Table. 

in which there is no intermediate subgroup, e.g. 
C2 ~ Czv, Ca-+ T, other ascents being attained by a 
multi-stage process, e.g. C4~ ~ D4n --> On. Some use- 
ful diagrams for finding some such routes have been 
given by Boyle (1969). Where significant orientational 
differences occur, changes in notation and the need for 
working with representations of unconventional point 
groups (e.g. where the z axis is not chosen as the 
principal axis) make the calculation quite difficult for 
anyone not completely familiar with the elements of 
point groups, so that all such ascents have been in- 
cluded. It has been possible to incorporate many as 
footnotes giving instructions for altering a given table. 
All the point groups appearing in the tables are con- 
ventional, so that local frames of axes are used in the 
context of molecules or crystals. Not all of the orien- 
tational variants are represented crystallographically 
since some of the differences are merely ones of label- 
ling of equivalent planes or axes so that geometrically 
the ascents are identical. However, when relative 
differences in labelling can be distinguished geometri- 
cally, these may occur crystallographically. 

When a centre of symmetry is present in both sub- 
group and supergroup, the ascent between the corre- 
sponding uncentrosymmetric groups should be used, 
the subscripts g or u being added as required. Ascents 
involving addition of a centre of symmetry only have 
not been tabulated (with the sole exception of Td --~ On 
to avoid notational complications) since each represen- 
tation gives one gerade and one ungerade without 
other change of notation. The group products useful 
for these cases are: C2p_ 1 x S 2 = S4p_ 2; C2p x S 2 = C2p h ; 
C(2p_l)n >( S2 = C(4p_2)h; C2p v X S2= Dzrn; C(2p+1)o x Sz= 
D(2p+l)a; D2p × S2=D2ph; D 2 r + l  × S2--~D(2p+l)a; D2pa× 
$2 = Dgpn ; I x $2 = In; O × $2 = Oh ; Sgp x $2 = C4rn ; T x 
&=T~. 

Where feasible, general tables have been produced 
using the variable p, which consistently takes integral 
values greater than or equal to one. However, such 
general tables have been restricted to those involving 
a constant subgroup, or those in which the ratio 
h>/h < is constant. To simplify printing the summations 
over the dummy index r have been abbreviated so that 

r=p r<_p--I 
becomes Y.p and ~ becomes ~,-1 .  This latter type 

r=l  r_>l 

of summation has no terms unless both conditions on 
r are met, which is the case in this paper when 
p>2 .  If a group has only one doubly-degenerate 
(single-valued) representation, then the E1 generated 
by the general formulae should be read E. The point 
groups which are still occasionally known as Cs, C~ 
and Ca, have been written Clh, $2 and $6 and thus 
fitted into the corresponding families of groups. 

Finally, the ascents in symmetry for the double 
groups have been condensed into the same table as 
those for the corresponding ordinary point groups, the 
correlations between the double-valued representations 

A C 28A - 6 
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D2a 
hi 
A2 
B1 
B2 
E 
Ell2 
E3/2 

Table 8. Ascent in symmetry  f r o m  the group D2a 

tra--> tra* aa ~ an aa --+ ira 
D4n D6a Ta On On 

Algq-Blu At+E4 A I + E  Als+Eg+ Tzu Aag+A2u+Eg+Eu 
A2g+B2u A2+E4 TI A2uq-Euq- Tlg Tlg+ T2u 
Axu+Blg BI+E2 Az+E Alu+Eu+Tzg A1u+Azg+Eg+Eu 
Azu+B2g B2+E2 T2 Azg+Eg+ Tlu Tlu+ Tzg 
Eg+Eu EI+E3+E5 TI+T2 Tlg+ Tlu+ Tzg+ T2u Tlg+ T1u+ T2g+ T2u 
Ellz+ E712 E112+ EsI2+ E9/2 EllZ-I-G3/2 E1/2g-k Ell2uq-G3/2gq-G3/2u E1/2g-k El/2u-t-G3/2g+ G3/2u 
E3/2-t-E5/2 E3/2-kE7/2q-E11/2 E5/2+G3/2 E1/2g+E1/2uq-G3/2g-kG3/2u E1/2g+El/2u+G3/2gq-G3/2u 

* For try instead of o-a in the supergroup, interchange B1 and B2 (irrespective of the parity label) on the right-hand side of the 
Table. 

being separated from those between the single-valued 
representations by a horizontal  line. Orientat ional  $4 
differences are not  relevant to ascents between double A 
groups since the characters of  the double-valued re- B 
presentations are all zero for the relevant reflexions and E 
twofold rotations. The notat ion used for the double- E1/z 
valued representations is that of  Herzberg (1966) with E3/2 
analogous extensions to cover the groups he does not s4p 
describe. In  order to avoid the use of inconveniently A 
small  type in subscripts, ½, ~ etc. have been printed as B 
1/2, 3/2 etc. ; representations such as El/20 and G3/2,, are Er 
thus to be read as E½o and G~,. 

The tables have not been restricted to crystallo- 
graphic groups but  they are only complete for point  
groups containing proper axes of  symmetry of  order 
up to six and improper  axes of  order up to twelve. In T 
practice many  other groups can be reached using the A 
general formulae where these have been given. E 

T 

Table 9. Ascent in symmetry from the group D3h 

Dan 
Ai 
A;" 
A'~ 
A;' 
E' 
E tt 
Ell2 
E312 
E5/2 

E(2r-1)12 

El 12 
G3/2 

T~ 
try --> try* A1 

D6n A2 
Alg+Blu E 
Alu+ Blg 7"1 
Azg + B2u T2 
Azu + Bzg E]/2 
Elu + Ezg E5/2 
Els + E2u G3/2 

Table 10. Ascent in symmetry  f r o m  $4,, groups 

$12 
A-bE4 
B+E2 
E1 +E3+E5 
E1/2 + E5/2 + E912 
E312 -4- E712 q- El 1/2 

C4~n D2pa 
Ag+ Bu AI +A2 
Au+ Bg B1 + B2 
Erg+ Eru 2Er (1 <_r<_2p-- 1) 
E(2r-1)/zg+ E(2r-1)/2u 2E(2r-1)/2 (1 <r<2p) 

Ell2g q" E1/2u 
E3/2g q- E3/2u 
E5/2g + E5/2u 

* For tyv instead of aa in the supergroup interchange Bx and 
B2 (irrespective of the parity label) on the right-hand side of 
the Tabel. 

Table 11. Ascent in symmetry  f rom the groups 
T and Ta 

Ta 0 I 
At+A2 AI+A2 A+G 
2E 2E 2H 
TI+Tz TI + T2 TI + T2 + G + H 
E1/2-k Es/2 E1/2 q- E5/2 
2G3/2 2G3/2 

On 
Algq-A2u 
Aluq-A2g 
Eg + Eu 
Tlg+ T2u 
Tau+ T2g 
Ell2g + Ell2u 
E512g + Es/zu 
G3/2g + G312u 
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