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Equation (18) describes the vibration of an atom in a
crystal lattice for temperatures above half the Debye
temperature of the latticee. From the quantities
(ua(Dug(h)), the anisotropic Debye—Waller B values can
be obtained by well known methods (Cruickshank,
1956). At high temperatures, T> @), only the first term
in the right-hand part of equation (18) is of importance,
and Debye-Waller B values become independent of
the atomic masses.

Two restrictions should be made. Equation (18) has
been derived within the harmonic approximation
which will certainly be violated at very high tem-
peratures. The second restriction is in dealing with the
temperature dependence of the two sums in equation
(18). The matrix elements (®@~1),, (X) and @,4(%) are
temperature dependent, vig the interatomic forces
which depend, for example, on the atomic distances. It
is expected, however, that the sums will vary only very
little with temperature.

Example

For a cubic lattice, the Debye—Waller B value of the
rth atom is obtained from equation (18) as:
kT h?
—em2 | M -1y (k i
BK 8n [ N g (q) )m!(KK)-I— 12kTMx

n )
_WMSMiZ d’u(x.c)]. (191
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In the above expression the first term in the right-hand
part is independent of the atomic mass. The other two
terms are inversely proportional to the atomic mass and
to the square of the atomic mass. In general, it is very
difficult to evaluate the two sums of equation (19),
because, for this, a detailed knowledge of the atomic
forces is required. We have determined the two sums
by a least-squares fit of equation (19), for 12 tempera-
tures, to KBr B values calculated by Reid & Smith
(1970). The Debye temperature of KBr is about 160°K
(Reid & Smith, 1970) and the 12 temperatures chosen
range from 75°K (about half the Debye temperature)
up to 295°K. Results are shown in Table 1.

The results in Table 1 show the various contributions
to B, at temperatures above the Debye temperature
(for KBr 160°K) the main contribution to the Debye—
Waller B values comes from the mass-independent
term of equation (19). Table 1 also shows that equa-
tion (19) describes very well, in a large temperature
region, the temperature dependence of both the Debye-
Waller B values of KBr.
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The Method of Ascent in Symmetry. I. Theory and Tables
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Supergroup tables are presented whereby a representation of a subgroup can be correlated with those
representations of the supergroup which are obtained on ascent in symmetry. The method of derivation
is explained and various orientations of the subgroup with respect to the supergroup considered. The
tables also include the correlations between the double-valued representations of the corresponding

double groups.

Introduction

The well-known process of descent in symmetry allows
one to discuss how the representations of a given group
decompose into representations of a subgroup. Tables

have been constructed to facilitate many such correla-
tions and these are very useful in numerous physical
problems, e.g. the splitting of atomic energy levels in
a crystal field.

The reverse correlation, in which we ascend in
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symmetry from a group to a supergroup is less well
known and supergroup tables have not been published
for all the cases of interest. In this series of papers it
will be shown that such tables may rigorously be ap-
plied to a wide variety of physical problems. These will
include the rapid construction of molecular orbitals,
the determination of molecular and lattice vibrations,
the study of problems concerning electron and nuclear
spins and the additivity of the tensorial properties of
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bonds and atoms, e.g. polarizability. The first paper
contains the general mathematical theory and the
tables which are of use in all the applications.

Theory

Let us consider the ascent in symmetry from the point
group C, to C,,. The representations of these groups
can be specified by considering their behaviour with

Table 1. Ascent in symmetry from Ca,,, groups

Cy Cap Cap+1
4 A+ Bt S, E  A+t>p Er
B2 >» E@r-ni2 Bep+nizt 2p Egr-112
C; Cep Cep+3 T
A A+B+ 3 p-1 E3r A+ 2p Esr A+T
E Sp(Esr-2+ E3r-1) 2o+l Ear—2+ 2p E3r—1 E+2T
By 20 E@r-3)12 Bp+3i2t+ 2p E@r-312 G3/2
Eip 2p (Er-s2+ Er-1/2)  2p+1 E6r-512+ 20 E6r-1i2 2E12+ Gz
Cap-1 Cep-1)n
A AI + A//
E, E.+E; (I1<sr<p-1)
Bep-1i2 Eop-1i2
Egr-ni2 E@r-1y12+ Eap—2r-12 1<r<p—1)
Cap+1 Cep+yv O Dapyg
A A1+ As
Er 2E. (1<r<p)
Bop+1y2 E@p+ir2
E@r-112 2E@r-n2 (1=r<p)
Table 2. Ascent in symmetry from C,, groups
C,— C%* Cy,—> C, C, — Cof
Ca Csp Cyp+2 D, Dyp+a Dyp+2
A A+ B+ 2 p-1 Ear A+ Sp Eor A+ B, A1+ A2+23p Eor A1+ Bi+ D2p Er
B 2p Ear-1 B+ >p Exr-1 B2+ B; Bi1+B2+23p Exr1 A2+ B+ 220 Er
Eyp 220 Eer-n12 22p+1 E@r-n/2 2Ey2 22 p+1 E@r-vr2 22 p+1 Egr-vi2
C,—Cy Cy— Cif
C Dop+1 Dyp Dyp
A A1+ 2p Er Aj+ A2+ B1+Bay+23'p-1 Ear A1+ Bi1+ 2201 Er
B Ax+ 2 Er 229 Ear1 A2+ Ba+ J2p-1 Er
Eyp Egp+12+22p E@p-viz 2220 E@r-n12 2229 E@r-n/2
C,—>C, C;— Cy C,—>C,y C,—C,
C; Dsa Dya (o (o]
A A1+ A2+ B1+ By A1+ B2+ E A1+ A2+ 2E+ T+ T2 A1+ E+T+2T,
B 2E A+ B>+ E 2T14 27T, A+ E4+2T1+ T,
Ey 2E12+2E3); 2Ei;2+2E32 2E12+2Es5;2+4G3)2 2Ei;2+2Es;2+ 4G
Cap Sap C2pv o1 D3p (except Dy)
A A+B A1+ A2
B Ep B;+B;
E, Er+E;p-r 2E(1<r<p-1)
Eq@r-12 E@r-1y2+ Ewp-2ry1)i2 2EQr-1n2 (1=r<p)

* Interchange of {C%,C%,C%} in D, requires interchange of {Bj, B, B3} respectively.
t Interchange of C, and C; in Djn+; requires interchange of By and B,.
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respect to the generators of these groups. These are the
key elements from which all the others may be derived
and will be denoted in braces e.g. {C,} and {C,, o}*}
for the point groups C, and C,, respectively. In as-
cending from C, to C,, it is necessary to specify how
the representation of C,, obtained will behave with
respect to the new generator, 3%, All possibilities must
be accounted for and so we obtain the supergroup
table

CZ I CZv!
A |41+ 4,
B |B,+B,

where A and B representations are respectively symmet-
ric and anti-symmetric to the C, operation and the
subscripts 1 and 2 respectively denote symmetry and
anti-symmetry to the o™ reflexion. If 2. and /_ denote
the orders of the sub- and supergroup respectively,
the character system of the representation of the super-

THE METHOD OF ASCENT IN SYMMETRY. I

group obtained by ascent in symmetry will be such that

(1) for elements in both groups the character will be
h. [h. times the corresponding character of the re-
presentation of the subgroup;

(2) for elements occurring only in the supergroup all
characters are zero.

This is a mathematical process by which all super-
group tables may be obtained, but it is much quicker to
take advantage of the subgroup tables, many of which
have already been published. The basis for this is that
if two representations are related by descent in symme-
try, they must also be related by ascent in symmetry.
The subgroup table C,, — C, shows that the 4 repre-
sentations of C, are only obtained from A; and A,
representations of C,, so we should expect the super-
group table C, — C,, to contain the entry 4 — 4, + A4,.
In applying this method, two points must be taken into
account in more difficult cases:

Table 3. Ascent in symmetry from Cgy_ 1y, groups

g —0n o — Oy o — oyt o — o%¥}
Cin Cep+nn Dap+nn D@pinn Capo Dsp
A A+ 30 E] A+ A3+25, E; A+ A+ 2o {E[+E} A1+ B1+ 2’ p-1 Er Ag+Big+ Bou+ B3u
A A+ 3 E/ A+ A7 +25p EV A7+ A3+ 3p {E]+E/} A+ B+ > p-1 Er Au+Biu+ Bag+ Bsg
E 2ap+1 Eer-ni2 222p+1 E@r-112 2%2p+1 E@r-n12 23 Egr-n12 2E1726+2E1/2u
G —0n c—>0opt
Cin Dypr Dypn
A A1g+ A2+ B1g+ B2 +22 p Eor-1u+22 p-1 Earg Arg+ Aou+ Big+Bau+ J2p-1 {Ere+ Eru}
A Arut+AzutBrut+Bru+22p Eor-106+22"p-1 Eoru Aru+ Az +Bru+ Bag+ 22p-1 {Erg+ Eru}
Eip2 222p {E@r-ni2g+ E@r-nr2u} 222p {E@r-Di2e+ E@r-i2u}
o —On o — 0T
Cun Dupinn Dupion
A’ Arg+A2g+Biut+Bau+22p {Egr-2u+ Eare} Arg+ A2u+ Biu+Bag+ 22p {Erg+ Eru}
A Aju+ Azut+ Big+Bae+23p {E(Zr—25g+E2ru} Atu+A2¢+Big+ Bou+ 220 {Erg+Eru}
Eyp 232p+1 {E@r-126+ E2r-1y12u} 2%2p+1 {E@r-1i28+ E2r-1)/2u}
G —>O0hr O —>0g
Cin On O
A A1g+Asg+2Eg+ T15+2T1u+ Tog+ 2T Arg+ Apu+ Eg+Eu+T1542T 10+ 2T+ Tou
A7 Atut+Aou+2Eu+2T1g+ T10+2T26+ Tou Atut+ A2+ Eg+ Eu+ 2T+ T1u+ Tog+2T5u
Eyp 2E126+2E12u+2E5/2¢ +2E52u+4G3/26 +4G3/2u 2E12¢ +2E12u+2E5/2+2E5/2u +4G3/26 +4G3/2u
Cep-nn Cup-2n Cop+pr | Dop+n
A Ag+ By A Ai-l-A;
A" Au+ By 4" Ay + A7
Eé,_l E@r-1myu+t+ E@p-2ns (I=r=p-1) E, ZE,:, (I<r<p)
gz,._l g(zr—l)gE'F Eop-2ryu 8 <r<p —3 E! 2E,; (1<r<p)
2 2ret Eop-2r-1yu srsp- Eqr-vr2 2E@r-p2 (1=r<2p+1)
Eéi Ezru+ E@p—2r-1g (i<r<p-2) ’ 4
E@r-12 Egr-vi2et+ Eer-ni2e (1<r<2p—1)

C1r— C2p+1)v: This Table is identical with that for C; — D;p+ ifthe A and B representations of C; are replaced by A” and 4"

respectively.

* In the group C,v, take 0%?=0, and o¥?=0a.

1 For o4 instead of oy, interchange By and B,, parity labels being unchanged where relevant,
1 Permutation of {o%¥, g%2, g2} implies a corresponding permutation of {B;, B,, B3} irrespective of the parity label.
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Table 4. Ascent in symmetry from C,;, groups
Oy —> Oy 0% — gy*T
Cav Capv Cup+2)v
Ay A1+By1+ 2'p-1 Ear A1+ 3p Ear
Az A+ B+ 2'p-1 Ear A+ 3p Ear
B >» Exr— Bi+ 3p Exr1
B> >p Exr—1 Ba+ 3 p Exr—g
Eyp 229 E@r-n12 22p+1 E@r-1/2
0%z —» a-xz-l-
C,— Cif 20 — 20v* 0% — On; OV — oyp*t
Cay Dsp Dyn Dyn
A; Ag+ Biu A1g+ A2u+ B1g+ Bou A1g+Big+ Ey
As Au+Big Aiu+ Aze+ Bru+ By Atu+Biu+ Eg
By B¢+ B3u Eg+Ey Azg+Bag+ Ey
B; Byu+ B3g E¢+E. Azu+ Byu+ Eg
Eip Eij26+ E12u Eijze+ Erjpu+Esppg+Esppu Eyze+ Evzu+ Esjpe+ Espu
Cy — C3; 6%% — g% Cy — Cy; 672 —> 611§
Cyv Den Degn
A Ajg+A2u+ Ezg+Ezu A1g+Biu+Eju+ Eyg
A2 Atu+ Aze+ Eze+ Eu Aru+Big+ Erg+ Ezu
B, Byu+ B+ Ejg+ Eju Azg+Bau+Eru+ Eop
B; Big+Bru+ E1g+ Elu Azu+Brg+ Eig+ Ezu
Eyp2 Eyj2¢+ Ev2u+ Esjpe+ E3j2u+ Espag+ Espou Erj2¢e+ Evj2u+t E3e+ E3jpu+ Esjpg+ Esjou
0% — apt
Cao Dp+nin Dpa
Ay Ay+ 29 Ep A1+ B+ 3'p-1 Ear
A A+ 2p E,’ A2+ B1+ 3 p-1 Ear
B A:zl+ 2p E,” 2p Eap—1
B A+ 2p E, >p Eap-1
Ey 22p+1 E@r-n/2 220 E@r-ni2
20y — 20 20y — 204 0% — o} oY% — agt
Cov O Or On
Ay Arg+ A2 +2Eg+T1u+Tou Atg+ Asut+ Eg+Eu+ Tru+ Tog A1g+ Eg+Tiu+ Tas+ Tou
Az Aru+Azu+2Eu+ Tig+ Tag Aru+Azg+ Ej+Tou+Eu+Tig Aru+Ey+Tig+ Tog+ Tou
By T1g+T1u+Tog+Tou T1g+T1u+Tog+ Tou A2+ Eg+Tig+Tiu+ Tou
B T1g+ Tiu+ Trg+ Tou Tig+ T1u+Toz+ Tou Azu+ Eu+Tig4+ Tiu+ Tag
E2 Evj2e+Evzu+t Espg+ Esipu+2G329 Evze+ Evjpu+t Esppe+ Esuz+2G32¢  Erje+ Eijzut Esjae+ Ezjzu+2G3yag
+2G3u2 +2G32u +2G3u;2
Capv Djpa
A A1+ B2
Az A2+ By
By, B> Ep
r E:+Eyp—r (1<r<p-1)
Egr-n/2 E@r-n72+ Ewp-2r+72 (11 <p)
Oy — Oy* Gy — Gp*
Capv Dypn Clap+2)v Dp+2yn
Ay A1g+Azu A A1g+ Asu
As Aru+Azg Az Aju+ Azg
B Big+ Bau By Biu+ Bog
B, Biu+ By B> Big+ Bau
E, Erg'l'Eru (ISrSZp-—l) E;, Erg+Eru (ISrSZP)
Er-1/2 E@r-n12¢+ E@r-n/20 (1<r<2p) E@r-1)2 E@r-vetEor-niow (1<r<2p+1)

* For aq instead of v in the supergroup, interchange B; and B, (irrespective of any parity label) on the right-hand side of

the Table.

1 For o¥* instead of %% in C,y interchange B; and B; on the left-hand side of the Table.

1 Permutation of {C3, C3, C5} in D,x implies a corresponding permutation of {Bi, Bz, B3}, irrespective of the parity label, on
the right-hand side of the Table.

§ For C; instead of C;, proceed as footnote marked*.
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(1) if on descent in symmetry, an irreducible repre-
sentation of the subgroup occurs more than once,
then on ascent in symmetry that number of the rep-
resentation of the supergroup will be obtained from
the representation of the subgroup, except when
the representation of the supergroup is degenerate
and separable, i.e. it consists of a complex con-
jugate pair of representations, in which case each
member of the pair should be treated separately.
The separable representations are the doubly-
degenerate representations of the point groups
C,, Cu (both for n>3), S,,(n=2), T and T}, the
doubly degenerate representations of the double
groups C,(n>3),C,(n=1), Sy(n=2), the E,, re-

@

THE METHOD OF ASCENT IN SYMMETRY. I

presentations of C,, and D, (both for n=3, 5, 7,
... ), the E,,, and E,,, representations of D,,(n=
3,5 7, ...), and the fourfold degenerate repre-
sentations of T’ and T.

Differences in orientation

In many cases where the subgroup contains fewer two-
fold axes and/or reflexion planes than the supergroup,
it is possible to ascend in more than one way according
to which axes or planes of the supergroup correspond
to those of the subgroup. Different supergroup tables

&then arise when at least one of the following conditions

is fulfilled.

Table 5. Ascent in symmetry from Cy 1y 8rOUPS

oy —> Ov* oy —> O
Csv Cepv Ciop+3rv Den Ta
Ay A1+ B1+ 2'p-1 Esr A1+ 2p E3r Ajg+ Azu+ Bru+ Bog A1+ T
Az Az+ B2+ 3 p-1 Exr A2+ 2p Esr Aru+ Azg+ Big+ Bau A2+ T,
E Op (Esr-2+ E3r-1) >p+1 Esr-2+ 2p E3r-1 Ejg+ Eru+ Exg+ Epu E+T+T;
Eyp2 S>p (E@r-s2+ E@r-112)  2p+1 Et6r-512+ 2 Eer-1)2 Eyj2s+Ey2u+Esppg+Espu Eyp+ Esiz+ G
Ejpz 23 E@r-3)2 Egr+3)2+22p E6r-3)12 2E370¢+2E3/2u 2Gs;2
Cap+1)v Dipina Dp+1n
Ay A1g+ Az A;+A'2'
Az Aju+ Az Ai'-l-A'z
E, Erg+Eru, Er+E;.I (ISVSP)
E@r-n12 E@r-1i2¢+ E@r-1i2u EQr-12+ Ep—2r+32 (1=r=<p)
Egpini Egpivzet Eep+i2u 2E@p+13i2
* For ogq instead of g, in the supergroup, interchange B; and B, (irrespective of any parity label) on the right-hand side of
the Table.
Table 6. Ascent in symmetry from D,, groups
3C;—> C3+2Cy; C5—> C5*  CE—> Cp; C3— Gy
D, Dyp Dyp+2
A A1+ B1+ 2 p-1 Ear A1+ 2p Ear
B A+ Bo+ 3 p1 Eor A2+ Jp Ear
B, 29 Ear Bi+ 2p Ezr1
B; >.p Exr—1 By+ 3p Exr
Eyp 220 E@r-ni2 22p+1 E@r-ni2
CZ— Cy; C3+Cy—2C* 3C, —3C, C2z— Cr*
D T 0 o Dipa
A A+E A\+E+T, A1+ A>+2E A1+ B1+ 2'p-1 Ear
B T A+ E+ T, T+ T, A2+ Bo+ 3 p-1 Eor
B, B3 T T+ T, T+ T, 2. Ear-1
Ey2 Ey2+Gap2 Ev2+ Es;2+2G32 Ey2+ Esp+2G3)2 229 Eer-n12
C,—Cot
Dap+2 D@p+2)a Dy Y%
Ay A1+ B A A1+ E
As Ax+ B, As T
By, B, Epiy By T
E, E;+ Espta—r (1<r=p) B3 A+ E
E@r-n12 Egr-nia+Eap-2r+5i2 (1=r<p+1) E Th+Ts
Ep Eip+ G2
E3p; Es;z+ G2

* Permutation of {C%, C%, C3} in D implies a corresponding permutation of {B), By, B3} on the left-hand side of the Table.
+ For C. instead of C,, interchange B; and B, on the right-hand side of the Table
1 For C’, instead of C, in Dy, interchange B; and B, on the left-hand side of the Table.
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(1) A twofold axis in the subgroup correlates with
either the principal axis or a subsidiary twofold
axis of the axial point groups D,,s and D, (n=1)
or the cubic groups O and O,.

(2) A set of three twofold axes in the subgroup corre-
lates with either the three principal or one prin-
cipal and two subsidiary twofold axes in the cu-
bic point groups O and O,.

(3) A reflexion plane in the subgroup correlates with
either the horizontal (g,) or a vertical plane in
a D,,(n=2) supergroup.

(4) A set of reflexion planes in the subgroup corre-
lates with either only vertical planes or vertical
plane(s) and the horizontal plane in a D, (n=2)
supergroup.

(5) The supergroup contains representations which
are geometrically equivalent, i.e. differences in
character systems arise only for classes of geo-
metrically equivalent elements such that the sys-
tems can be considered as permutation variants.
In practice such representations are all the B-type
representations of the point groups Cs,,, D,, and
Dy(n21).

Tables specifying the orientation of the point groups
at Wyckoff sites within the point group of a crystal
(i.e. the crystal class) have been published earlier
(Boyle, 1971).

The tables

In order to minimize the area of these tables (Tables
1 to 11), it was necessary to restrict the ascents to those

Table 7. Ascent in symmetry from D,, ., groups

D; | o] 1
Ay A1+ T, A+G+H
Az A2+ T T\+T2+G
E E+T+T; T\+T,+G+2H
Eyp Ey2+Esp+ Gz Erj2+ E72+ G2+ 2152
Esp 2G3;2 2G32+2157
Ds 1
Ay A+H
Az T+ T,
Eq T\+G+H
E, T+ G+ H
Eyp E12+G3p2t+ sz
Esp;z E3p+Gappt+1sp2
Es;p 21512
Cy— Co*
D2p+1 D4p+2
A1 A1+ B
A A+ B,
Er Er+ Ezp—r+1 (1<r<p)
Eq@r-n12 E@r-1y2+ E(ap—2r+32 1 =r=<p)
Eap+viz| 2E@p+ni2

Dsp+1 — Dopinn: This Table is identical with that for
Cep+nyo — Dep+pn.

* For C, instead of C, in D4p+s, interchange By and B;
on the right-hand side of the Table.
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in which there is no intermediate subgroup, e.g.
C, — C,,, C3— T, other ascents being attained by a
multi-stage process, e.g. C;, — Dy, — O,. Some use-
ful diagrams for finding some such routes have been
given by Boyle (1969). Where significant orientational
differences occur, changes in notation and the need for
working with representations of unconventional point
groups (e.g. where the z axis is not chosen as the
principal axis) make the calculation quite difficult for
anyone not completely familiar with the elements of
point groups, so that all such ascents have been in-
cluded. It has been possible to incorporate many as
footnotes giving instructions for altering a given table.
All the point groups appearing in the tables are con-
ventional, so that local frames of axes are used in the
context of molecules or crystals. Not all of the orien-
tational variants are represented crystallographically
since some of the differences are merely ones of label-
ling of equivalent planes or axes so that geometrically
the ascents are identical. However, when relative
differences in labelling can be distinguished geometri-
cally, these may occur crystallographically.

When a centre of symmetry is present in both sub-
group and supergroup, the ascent between the corre-
sponding uncentrosymmetric groups should be used,
the subscripts g or u being added as required. Ascents
involving addition of a centre of symmetry only have
not been tabulated (with the sole exception of T; — O,
to avoid notational complications) since each represen-
tation gives one gerade and one ungerade without
other change of notation. The group products useful
for these cases are: Cypy X Sy =S8;,_2; Cyp X Sy =Cyp;
Cip—1n X S2=Clap—2yn> Copy X 52= Dy Cap 4 1y0 X S2=

@p+d> DapXS2=Dapn; Daps1 X S3=Dpi1ya; Dopa
S3=Dipn; I x Sy=14; O X S,=04; S4p X S3=Cypn; T X

=T,

Where feasible, general tables have been produced
using the variable p, which consistently takes integral
values greater than or equal to one. However, such
general tables have been restricted to those involving
a constant subgroup, or those in which the ratio
h. [h. is constant. To simplify printing the summations
over the dummy index r have been abbreviated so that

r=p r<p-—1
> becomes 3, and > becomes 3;,_;. This latter type

r=1 r>1

of summation has no terms unless both conditions on
r are met, which is the case in this paper when
p=2. If a group has only one doubly-degenerate
(single-valued) representation, then the E; generated
by the general formulae should be read E. The point
groups which are still occasionally known as C;, C;
and C;; have been written Cy,, S, and Sg and thus
fitted into the corresponding families of groups.
Finally, the ascents in symmetry for the double
groups have been condensed into the same table as
those for the corresponding ordinary point groups, the
correlations between the double-valued representations
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Table 8. Ascent in symmetry from the group D,

oq — oa* . 04— O Oq — Oa
Dag Dyp Dga Ta Ox On
Ay A1+ Biu A1+ Eq A+ E A1g+Eg+Tau Aig+A2u+ Eg+Ey
A Aze+ Bou A+ Eq T Axu+Eu+Tig T+ Tou
B Aju+Big B +E; A2+ E Atu+Eu+Tag Ajut Azg+Eg+ Ey
B Azu+ Bag B>+ E; T, Aze+ Eg+ Thu Tiu+Tog
E E;+Ey E1+ E3+E;s T1+ T, Tie+ Tiu+ Tog+ Tou Tig+ T1u+ Tog+ Tou
Ei2 Ev2+Eqn Eiy2+Espp+Eo2 Eyz+Giz Epet Erput Gape+Gapu Eije+ Erzut Gyjze+ Gajau
Esp E3pp+Esx  Espt+EwptEn;z  EsptGsz Eyzt Enzut Gspe+ Gapou Ey2s+ Evpu+ Gapag + Gajou

* For oy instead of o4 in the supergroup, interchange B; and B (irrespective of the par_ity label) on the right-hand side of the

Table.

being separated from those between the single-valued
representations by a horizontal line. Orientational
differences are not relevant to ascents between double
groups since the characters of the double-valued re-
presentations are all zero for the relevant reflexions and
twofold rotations. The notation used for the double-
valued representations is that of Herzberg (1966) with
analogous extensions to cover the groups he does not
describe. In order to avoid the use of inconveniently
small type in subscripts, 4, 3 ezc. have been printed as
1/2, 3/2 etc.; representations such as E, ,, and Gs,, are
thus to be read as £, and G3,.

The tables have not been restricted to crystallo-
graphic groups but they are only complete for point
groups containing proper axes of symmetry of order

up to six and improper axes of order up to twelve. In
practice many other groups can be reached using the
general formulae where these have been given.
Table 9. Ascent in symmetry from the group D,
oy — oyt

D3h Dsh,

Aj A1g+ Bru

A’l’ A]u"l‘B]g

A, Azz+ Bau

A’Z’ A2u+BZg

E, E1u+E2g

E” E1g+ Ezy

Eyp E\j2e+ Ej2u

E3;z E3j28+ E3p2u

Esp2 Espze+ Esppu

* For gy instead of oq in the supergroup interchange B; and
B, (irrespective of the parity label) on the right-hand side of
the Tabel.

Table 10. Ascent in symmetry from S,, groups

Sy S12

A A+E4

B B+ E,

E Ei+Ey+Es
Ey Eyj2+Esi2+ Egp2

Eyp E3p+ Eq2+Ey2

Sip Caph Djpa

A Ag+ Bu A1+ Az

B Au+ Bg B+ B>

E; Erg'l'Eru 2Er (lSrSZp—-l)

Egr-n12 Er-nie+ Ear-ni2u 2EQr-12 1<r<2p)

Table 11. Ascent in symmetry from the groups

T and T,

T | Ta 0o 1

A A+ Az A1+ Az A+G

E 2E 2E 2H

T T+ T, T+ T, T,+T+G+H

Eyp Ey2+Es;z  Eypt+Espp Eyp+Egp+1Isp

Gz 2G32 26y, 2G32+ 215,

Ta O

A Arg+Azu

A2 Atu+ Az

E Eg+Ey

T, Tig+ Tou

T Tiu+ Toe

Ep Ei2¢+ E1j20

Esp Esjze+ Esjzu

Gip G326+ Gij2u
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